IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v245y2015i1p247-264.html
   My bibliography  Save this article

A generic mathematical model to optimise strategic and tactical decisions in biomass-based supply chains (OPTIMASS)

Author

Listed:
  • De Meyer, Annelies
  • Cattrysse, Dirk
  • Van Orshoven, Jos

Abstract

High logistics and handling costs prevent the bioenergy industry from making a greater contribution to the present energy market. Therefore, a mathematical model, OPTIMASS, is presented to optimise strategic (e.g. facility location and type) and tactical (e.g. allocation) decisions in all kinds of biomass-based supply chains. In addition to existing models, OPTIMASS evaluates changes in biomass characteristics due to handling operations which is needed to meet the requirements set to biomass products delivered at a conversion facility. Also, OPTIMASS considers the re-injection of by-products from conversion facilities which can play a decisive role in the determination of a sustainable supply chain.

Suggested Citation

  • De Meyer, Annelies & Cattrysse, Dirk & Van Orshoven, Jos, 2015. "A generic mathematical model to optimise strategic and tactical decisions in biomass-based supply chains (OPTIMASS)," European Journal of Operational Research, Elsevier, vol. 245(1), pages 247-264.
  • Handle: RePEc:eee:ejores:v:245:y:2015:i:1:p:247-264
    DOI: 10.1016/j.ejor.2015.02.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715001654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.02.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    2. Wee, Hui-Ming & Yang, Wen-Hsiung & Chou, Chao-Wu & Padilan, Marivic V., 2012. "Renewable energy supply chains, performance, application barriers, and strategies for further development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5451-5465.
    3. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    4. Awudu, Iddrisu & Zhang, Jun, 2012. "Uncertainties and sustainability concepts in biofuel supply chain management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1359-1368.
    5. Havukainen, J. & Uusitalo, V. & Niskanen, A. & Kapustina, V. & Horttanainen, M., 2014. "Evaluation of methods for estimating energy performance of biogas production," Renewable Energy, Elsevier, vol. 66(C), pages 232-240.
    6. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    7. Fröhling, Magnus & Schwaderer, Frank & Bartusch, Hauke & Rentz, Otto, 2010. "Integrated planning of transportation and recycling for multiple plants based on process simulation," European Journal of Operational Research, Elsevier, vol. 207(2), pages 958-970, December.
    8. Papapostolou, Christiana & Kondili, Emilia & Kaldellis, John K., 2011. "Development and implementation of an optimisation model for biofuels supply chain," Energy, Elsevier, vol. 36(10), pages 6019-6026.
    9. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    10. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    11. Sharma, B. & Ingalls, R.G. & Jones, C.L. & Khanchi, A., 2013. "Biomass supply chain design and analysis: Basis, overview, modeling, challenges, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 608-627.
    12. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    13. Van Dael, Miet & Van Passel, Steven & Pelkmans, Luc & Guisson, Ruben & Reumermann, Patrick & Luzardo, Nathalie Marquez & Witters, Nele & Broeze, Jan, 2013. "A techno-economic evaluation of a biomass energy conversion park," Applied Energy, Elsevier, vol. 104(C), pages 611-622.
    14. Melkote, Sanjay & Daskin, Mark S., 2001. "Capacitated facility location/network design problems," European Journal of Operational Research, Elsevier, vol. 129(3), pages 481-495, March.
    15. Uhlemair, Harald & Karschin, Ingo & Geldermann, Jutta, 2014. "Optimizing the production and distribution system of bioenergy villages," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 62-72.
    16. Walther, Grit & Schatka, Anne & Spengler, Thomas S., 2012. "Design of regional production networks for second generation synthetic bio-fuel – A case study in Northern Germany," European Journal of Operational Research, Elsevier, vol. 218(1), pages 280-292.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Meyer, Annelies & Cattrysse, Dirk & Van Orshoven, Jos, 2016. "Considering biomass growth and regeneration in the optimisation of biomass supply chains," Renewable Energy, Elsevier, vol. 87(P2), pages 990-1002.
    2. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    3. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    4. Faissal Jelti & Amine Allouhi & Mahmut Sami Büker & Rachid Saadani & Abdelmajid Jamil, 2021. "Renewable Power Generation: A Supply Chain Perspective," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    5. Martinez-Valencia, Lina & Garcia-Perez, Manuel & Wolcott, Michael P., 2021. "Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    7. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    8. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    9. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    10. Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    11. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    12. Leonel J. R. Nunes & Sandra Silva, 2023. "Optimization of the Residual Biomass Supply Chain: Process Characterization and Cost Analysis," Logistics, MDPI, vol. 7(3), pages 1-21, August.
    13. Aalto, Mika & KC, Raghu & Korpinen, Olli-Jussi & Karttunen, Kalle & Ranta, Tapio, 2019. "Modeling of biomass supply system by combining computational methods – A review article," Applied Energy, Elsevier, vol. 243(C), pages 145-154.
    14. Gao, Evelyn & Sowlati, Taraneh & Akhtari, Shaghaygh, 2019. "Profit allocation in collaborative bioenergy and biofuel supply chains," Energy, Elsevier, vol. 188(C).
    15. Yazan, Devrim Murat & Mandras, Giovanni & Garau, Giorgio, 2017. "Environmental and economic sustainability of integrated production in bio-refineries: The thistle case in Sardinia," Renewable Energy, Elsevier, vol. 102(PB), pages 349-360.
    16. Corscadden, Kenneth W. & Biggs, Jaclyn & Thomson, Allan, 2014. "An integrated on-farm production system: Agricultural briquettes for residential heating in Nova Scotia, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 394-402.
    17. Martino, Gaetano & Polinori, Paolo & Bufacchi, Marina & Rossetti, Enrica, 2020. "The biomass potential availability from olive cropping in Italy in a business perspective: Methodological approach and tentative estimates," Renewable Energy, Elsevier, vol. 156(C), pages 526-534.
    18. Kasmuri, N.H. & Kamarudin, S.K. & Abdullah, S.R.S. & Hasan, H.A. & Som, A.Md., 2017. "Process system engineering aspect of bio-alcohol fuel production from biomass via pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 914-923.
    19. Emenike, Scholastica N. & Falcone, Gioia, 2020. "A review on energy supply chain resilience through optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Huang, Yongxi & Chen, Yihsu, 2014. "Analysis of an imperfectly competitive cellulosic biofuel supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:245:y:2015:i:1:p:247-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.