IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6515-d288538.html
   My bibliography  Save this article

The Review of Biomass Potential for Agricultural Biogas Production in Poland

Author

Listed:
  • Katarzyna Anna Koryś

    (International Institute for Sustainability, Estrada Dona Castorina 124, Rio de Janeiro 22460-320, Brazil
    Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment, Pontifícia Universidade Católica, Rio de Janeiro 22453900, Brazil)

  • Agnieszka Ewa Latawiec

    (International Institute for Sustainability, Estrada Dona Castorina 124, Rio de Janeiro 22460-320, Brazil
    Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment, Pontifícia Universidade Católica, Rio de Janeiro 22453900, Brazil
    Department of Production Engineering, Logistic and Applied Computer Sciences, University of Agriculture in Kraków, Balicka 116B, 30-149 Kraków, Poland
    School of Environmental Science, University of East Anglia, Norwich NR4 7TJ, UK)

  • Katarzyna Grotkiewicz

    (Department of Production Engineering, Logistic and Applied Computer Sciences, University of Agriculture in Kraków, Balicka 116B, 30-149 Kraków, Poland)

  • Maciej Kuboń

    (Department of Production Engineering, Logistic and Applied Computer Sciences, University of Agriculture in Kraków, Balicka 116B, 30-149 Kraków, Poland
    Institute of Technical Sciences, State Vocational East European Higher School in Przemyśl, Książąt Lubomirskich 6, 37-700 Przemyśl, Poland)

Abstract

Adequate management of biomass residues generated by agricultural and food industry can reduce their negative impacts on the environment. The alternative use for agricultural waste is production of biogas. Biomass feedstock intended as a substrate for the agricultural biogas plants may include energy crops, bio-waste, products of animal and plant origin and organic residues from food production. This study reviews the potential of selected biomass residues from the agri-food industry in terms of use for agricultural biogas production in Poland. The most common agri-food residues used as substrates for biogas plants in Poland are maize silage, slurry, and distillery waste. It is important that the input for the agricultural biogas installations can be based on local wastes and co-products that require appropriate disposal or storage conditions and might be burdensome for the environment. The study also discusses several limitations that might have an unfavourable impact regarding biogas plants development in Poland. Given the estimated biomass potential, the assumptions defining the scope of use of agricultural biogas and the undeniable benefits provided by biogas production, agricultural biogas plants should be considered as a promising branch of sustainable electricity and thermal energy production in Poland, especially in rural areas.

Suggested Citation

  • Katarzyna Anna Koryś & Agnieszka Ewa Latawiec & Katarzyna Grotkiewicz & Maciej Kuboń, 2019. "The Review of Biomass Potential for Agricultural Biogas Production in Poland," Sustainability, MDPI, vol. 11(22), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6515-:d:288538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6515/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6515/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pantaleo, Antonio & Gennaro, Bernardo De & Shah, Nilay, 2013. "Assessment of optimal size of anaerobic co-digestion plants: An application to cattle farms in the province of Bari (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 57-70.
    2. Ana Castro & Nilcileny Da Silva Batista & Agnieszka E. Latawiec & Aline Rodrigues & Bernardo Strassburg & Daniel Silva & Ednaldo Araujo & Luiz Fernando D. De Moraes & Jose Guilherme Guerra & Gabriel G, 2018. "The Effects of Gliricidia -Derived Biochar on Sequential Maize and Bean Farming," Sustainability, MDPI, vol. 10(3), pages 1-15, February.
    3. Lora Grando, Rafaela & de Souza Antune, Adelaide Maria & da Fonseca, Fabiana Valéria & Sánchez, Antoni & Barrena, Raquel & Font, Xavier, 2017. "Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 44-53.
    4. Dzikuć, Maciej & Piwowar, Arkadiusz, 2016. "Ecological and economic aspects of electric energy production using the biomass co-firing method: The case of Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 856-862.
    5. Bartoli, Andrea & Hamelin, Lorie & Rozakis, Stelios & Borzęcka, Magdalena & Brandão, Miguel, 2019. "Coupling economic and GHG emission accounting models to evaluate the sustainability of biogas policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 133-148.
    6. Daniela Szymańska & Aleksandra Lewandowska, 2015. "Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    7. Piwowar, Arkadiusz & Dzikuć, Maciej & Adamczyk, Janusz, 2016. "Agricultural biogas plants in Poland – selected technological, market and environmental aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 69-74.
    8. Bożym, Marta & Florczak, Iwona & Zdanowska, Paulina & Wojdalski, Janusz & Klimkiewicz, Marek, 2015. "An analysis of metal concentrations in food wastes for biogas production," Renewable Energy, Elsevier, vol. 77(C), pages 467-472.
    9. Grzegorz Maj, 2018. "Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector," Energies, MDPI, vol. 11(6), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arkadiusz Piwowar, 2020. "Agricultural Biogas—An Important Element in the Circular and Low-Carbon Development in Poland," Energies, MDPI, vol. 13(7), pages 1-12, April.
    2. Marian Niesler & Janusz Stecko & Sławomir Stelmach & Anna Kwiecińska-Mydlak, 2021. "Biochars in Iron Ores Sintering Process: Effect on Sinter Quality and Emission," Energies, MDPI, vol. 14(13), pages 1-20, June.
    3. Maciej Dzikuć & Joanna Wyrobek & Łukasz Popławski, 2021. "Economic Determinants of Low-Carbon Development in the Visegrad Group Countries," Energies, MDPI, vol. 14(13), pages 1-12, June.
    4. Ewa Brągoszewska & Maja Pawlak, 2021. "Health Risks Associated with Occupational Exposure to Biological Air Pollutants Occurring during the Processing of Biomass for Energy Purposes: A Case Study," Energies, MDPI, vol. 14(8), pages 1-10, April.
    5. Aneta Bełdycka-Bórawska & Piotr Bórawski & Michał Borychowski & Rafał Wyszomierski & Marek Bartłomiej Bórawski & Tomasz Rokicki & Luiza Ochnio & Krzysztof Jankowski & Bartosz Mickiewicz & James W. Dun, 2021. "Development of Solid Biomass Production in Poland, Especially Pellet, in the Context of the World’s and the European Union’s Climate and Energy Policies," Energies, MDPI, vol. 14(12), pages 1-22, June.
    6. Wojciech Czekała & Tomasz Jasiński & Mieczysław Grzelak & Kamil Witaszek & Jacek Dach, 2022. "Biogas Plant Operation: Digestate as the Valuable Product," Energies, MDPI, vol. 15(21), pages 1-11, November.
    7. Piotr F. Borowski & Jan Barwicki, 2022. "Efficiency of Utilization of Wastes for Green Energy Production and Reduction of Pollution in Rural Areas," Energies, MDPI, vol. 16(1), pages 1-12, December.
    8. Jennifer Attard & Helena McMahon & Pat Doody & Johan Belfrage & Catriona Clark & Judit Anda Ugarte & Maria Natividad Pérez-Camacho & María del Sol Cuenca Martín & Antonio José Giráldez Morales & James, 2020. "Mapping and Analysis of Biomass Supply Chains in Andalusia and the Republic of Ireland," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    9. Otton K. Roubinek & Anna Wilinska-Lisowska & Magdalena Jasinska & Andrzej G. Chmielewski & Krzysztof Czerwionka, 2023. "Production of Biogas from Distillation Residue as a Waste Material from the Distillery Industry in Poland," Energies, MDPI, vol. 16(7), pages 1-15, March.
    10. Stelios Rozakis & Andrea Bartoli & Jacek Dach & Anna Jędrejek & Alina Kowalczyk-Juśko & Łukasz Mamica & Patrycja Pochwatka & Rafał Pudelko & Kesheng Shu, 2021. "Policy Impact on Regional Biogas Using a Modular Modeling Tool," Energies, MDPI, vol. 14(13), pages 1-21, June.
    11. Ludwik Wicki & Kaspars Naglis-Liepa & Tadeusz Filipiak & Andrzej Parzonko & Aleksandra Wicka, 2022. "Is the Production of Agricultural Biogas Environmentally Friendly? Does the Structure of Consumption of First- and Second-Generation Raw Materials in Latvia and Poland Matter?," Energies, MDPI, vol. 15(15), pages 1-16, August.
    12. Adam Wąs & Piotr Sulewski & Vitaliy Krupin & Nazariy Popadynets & Agata Malak-Rawlikowska & Magdalena Szymańska & Iryna Skorokhod & Marcin Wysokiński, 2020. "The Potential of Agricultural Biogas Production in Ukraine—Impact on GHG Emissions and Energy Production," Energies, MDPI, vol. 13(21), pages 1-20, November.
    13. Krzysztof Księżopolski & Mirosław Drygas & Kamila Pronińska & Iwona Nurzyńska, 2020. "The Economic Effects of New Patterns of Energy Efficiency and Heat Sources in Rural Single-Family Houses in Poland," Energies, MDPI, vol. 13(23), pages 1-19, December.
    14. Jakub Mazurkiewicz, 2022. "Analysis of the Energy and Material Use of Manure as a Fertilizer or Substrate for Biogas Production during the Energy Crisis," Energies, MDPI, vol. 15(23), pages 1-20, November.
    15. Marek Wieruszewski & Katarzyna Mydlarz, 2022. "The Potential of the Bioenergy Market in the European Union—An Overview of Energy Biomass Resources," Energies, MDPI, vol. 15(24), pages 1-23, December.
    16. Patrycja Pochwatka & Alina Kowalczyk-Juśko & Piotr Sołowiej & Agnieszka Wawrzyniak & Jacek Dach, 2020. "Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects," Energies, MDPI, vol. 13(22), pages 1-17, November.
    17. Oleg Kucher & Taras Hutsol & Szymon Glowacki & Iryna Andreitseva & Anatolii Dibrova & Andrii Muzychenko & Anna Szeląg-Sikora & Agnieszka Szparaga & Sławomir Kocira, 2022. "Energy Potential of Biogas Production in Ukraine," Energies, MDPI, vol. 15(5), pages 1-22, February.
    18. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Dariusz Twaróg & Jarosław Gołębiewski & Sebastian Wójcik, 2021. "The Role of Agriculture and Rural Areas in the Development of Autonomous Energy Regions in Poland," Energies, MDPI, vol. 14(13), pages 1-21, July.
    19. Hubert Prask & Małgorzata Fugol & Arkadiusz Dyjakon & Liliana Głąb & Józef Sowiński & Alena Whitaker, 2023. "The Impact of Sewage Sludge-Sweet Sorghum Blends on the Biogas Production for Energy Purposes," Energies, MDPI, vol. 16(5), pages 1-11, February.
    20. Jakub Mazurkiewicz, 2023. "Loss of Energy and Economic Potential of a Biogas Plant Fed with Cow Manure due to Storage Time," Energies, MDPI, vol. 16(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arkadiusz Piwowar, 2020. "Agricultural Biogas—An Important Element in the Circular and Low-Carbon Development in Poland," Energies, MDPI, vol. 13(7), pages 1-12, April.
    2. Arkadiusz Piwowar & Maciej Dzikuć, 2019. "Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review," Energies, MDPI, vol. 12(18), pages 1-15, September.
    3. Chodkowska-Miszczuk Justyna & Kulla Marián & Novotný Ladislav, 2017. "The role of energy policy in agricultural biogas energy production in Visegrad countries," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 35(35), pages 19-34, March.
    4. Nives Jovičić & Alan Antonović & Ana Matin & Suzana Antolović & Sanja Kalambura & Tajana Krička, 2022. "Biomass Valorization of Walnut Shell for Liquefaction Efficiency," Energies, MDPI, vol. 15(2), pages 1-13, January.
    5. Gheorghe Lazaroiu & Lucian Mihaescu & Gabriel Negreanu & Constantin Pana & Ionel Pisa & Alexandru Cernat & Dana-Alexandra Ciupageanu, 2018. "Experimental Investigations of Innovative Biomass Energy Harnessing Solutions," Energies, MDPI, vol. 11(12), pages 1-18, December.
    6. Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
    7. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    8. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.
    9. Eljamal, Osama & Eljamal, Ramadan & Falyouna, Omar & Maamoun, Ibrahim & Thompson, Ian P., 2024. "Exceptional contribution of iron nanoparticle and aloe vera biomass additives to biogas production from anaerobic digestion of waste sludge," Energy, Elsevier, vol. 302(C).
    10. Huayong Zhang & Di An & Yudong Cao & Yonglan Tian & Jinxian He, 2021. "Modeling the Methane Production Kinetics of Anaerobic Co-Digestion of Agricultural Wastes Using Sigmoidal Functions," Energies, MDPI, vol. 14(2), pages 1-12, January.
    11. Huang, Zhi & Su, Bosheng & Wang, Yilin & Yuan, Shuo & Huang, Yupeng & Li, Liang & Cai, Jiahao & Chen, Zhiqiang, 2024. "A novel biogas-driven CCHP system based on chemical reinjection," Energy, Elsevier, vol. 297(C).
    12. Stephen Tangwe & Patrick Mukumba & Golden Makaka, 2022. "Comparison of the Prediction Accuracy of Total Viable Bacteria Counts in a Batch Balloon Digester Charged with Cow Manure: Multiple Linear Regression and Non-Linear Regression Models," Energies, MDPI, vol. 15(19), pages 1-23, October.
    13. Li, Jianzheng & Wang, Xin & Fan, Yiyang & Chen, Qiyi & Meng, Jia, 2024. "Biosynthesis of NPs CuS/Cu2S and self-assembly with C. beijerinckii for improving lignocellulosic butanol production in staged butyrate-butanol fermentation process," Renewable Energy, Elsevier, vol. 224(C).
    14. Barbera, Elena & Menegon, Silvia & Banzato, Donatella & D'Alpaos, Chiara & Bertucco, Alberto, 2019. "From biogas to biomethane: A process simulation-based techno-economic comparison of different upgrading technologies in the Italian context," Renewable Energy, Elsevier, vol. 135(C), pages 663-673.
    15. Tavera-Ruiz, C. & Martí-Herrero, J. & Mendieta, O. & Jaimes-Estévez, J. & Gauthier-Maradei, P. & Azimov, U. & Escalante, H. & Castro, L., 2023. "Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Wioletta Żukiewicz-Sobczak & Agnieszka Latawiec & Paweł Sobczak & Bernardo Strassburg & Dorota Plewik & Małgorzata Tokarska-Rodak, 2020. "Biochars Originating from Different Biomass and Pyrolysis Process Reveal to Have Different Microbial Characterization: Implications for Practice," Sustainability, MDPI, vol. 12(4), pages 1-13, February.
    17. Ingrao, Carlo & Bacenetti, Jacopo & Adamczyk, Janusz & Ferrante, Valentina & Messineo, Antonio & Huisingh, Donald, 2019. "Investigating energy and environmental issues of agro-biogas derived energy systems: A comprehensive review of Life Cycle Assessments," Renewable Energy, Elsevier, vol. 136(C), pages 296-307.
    18. Vanessa S. Schulz & Sebastian Munz & Kerstin Stolzenburg & Jens Hartung & Sebastian Weisenburger & Klaus Mastel & Kurt Möller & Wilhelm Claupein & Simone Graeff-Hönninger, 2018. "Biomass and Biogas Yield of Maize ( Zea mays L.) Grown under Artificial Shading," Agriculture, MDPI, vol. 8(11), pages 1-17, November.
    19. Galina Nyashina & Pavel Strizhak, 2018. "Impact of Forest Fuels on Gas Emissions in Coal Slurry Fuel Combustion," Energies, MDPI, vol. 11(9), pages 1-16, September.
    20. Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2022. "Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability," Sustainability, MDPI, vol. 14(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6515-:d:288538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.