IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p4141-d182008.html
   My bibliography  Save this article

Technology: A Necessary but Not Sufficient Condition for Future Personal Mobility

Author

Listed:
  • Margarita Martínez-Díaz

    (School of Civil Engineering, Campus de Elviña, University of A Coruña, s/n, 15071 A Coruña, Spain)

  • Francesc Soriguera

    (Barcelona Innovative Transportation (BIT), UPC-BarcelonaTech, Jordi Girona 1-3, 08034 Barcelona, Spain)

  • Ignacio Pérez

    (School of Civil Engineering, Campus de Elviña, University of A Coruña, s/n, 15071 A Coruña, Spain)

Abstract

Technological advances revolutionize industrial processes, science, communications, and our way of life. However, developed societies have reached a stage in which the fascination with technological innovations often results in their indiscriminate consumption. In this paper, road traffic is used as a line of argument to demonstrate that the random introduction of technology does not imply benefits to society. Particularly, it is analyzed why some of the potential benefits of technological progress are lost in fields such as traffic monitoring, data handling, and traffic management, or in sustainable mobility initiatives, such as the introduction of electric vehicles or the implementation vehicle sharing projects. The risks faced in the future advent of autonomous vehicles are also discussed, and ideas for improvement suggested. A critical reflection on other transportation modes that are expected to be realized in the near future is included as well. The performed analysis evidences that the potential improvement in personal mobility will not become a reality if it exclusively relies on the latest technological devices, in line with consumers’ fantasies or economic interests. This is a statement that could be generalized to many other fields. The implementation/consumption of a particular technology should not be an objective in itself, but a tool to bring benefits to society.

Suggested Citation

  • Margarita Martínez-Díaz & Francesc Soriguera & Ignacio Pérez, 2018. "Technology: A Necessary but Not Sufficient Condition for Future Personal Mobility," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4141-:d:182008
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/4141/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/4141/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georgina Santos, 2018. "Sustainability and Shared Mobility Models," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    2. Clewlow, Regina R. & Mishra, Gouri S., 2017. "Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States," Institute of Transportation Studies, Working Paper Series qt82w2z91j, Institute of Transportation Studies, UC Davis.
    3. Zhichao Chen & Tao Chen & Zhuohua Qu & Zaili Yang & Xuewei Ji & Yi Zhou & Hui Zhang, 2018. "Use of evidential reasoning and AHP to assess regional industrial safety," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-21, May.
    4. Jan C. T. Bieser & Lorenz M. Hilty, 2018. "Assessing Indirect Environmental Effects of Information and Communication Technology (ICT): A Systematic Literature Review," Sustainability, MDPI, vol. 10(8), pages 1-19, July.
    5. Bert Van Wee & David Banister, 2016. "How to Write a Literature Review Paper?," Transport Reviews, Taylor & Francis Journals, vol. 36(2), pages 278-288, March.
    6. Diakaki, Christina & Papageorgiou, Markos & Papamichail, Ioannis & Nikolos, Ioannis, 2015. "Overview and analysis of Vehicle Automation and Communication Systems from a motorway traffic management perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 147-165.
    7. Nihan Akyelken & David Banister & Moshe Givoni, 2018. "The Sustainability of Shared Mobility in London: The Dilemma for Governance," Sustainability, MDPI, vol. 10(2), pages 1-13, February.
    8. Docherty, Iain & Marsden, Greg & Anable, Jillian, 2018. "The governance of smart mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 115(C), pages 114-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teng Yu & Yajun Zhang & Ai Ping Teoh & Anchao Wang & Chengliang Wang, 2023. "Factors Influencing University Students’ Behavioral Intention to Use Electric Car-Sharing Services in Guangzhou, China," SAGE Open, , vol. 13(4), pages 21582440231, November.
    2. Curtale, Riccardo & Liao, Feixiong & van der Waerden, Peter, 2021. "User acceptance of electric car-sharing services: The case of the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 266-282.
    3. Marcos Medina-Tapia & Francesc Robusté, 2019. "Implementation of Connected and Autonomous Vehicles in Cities Could Have Neutral Effects on the Total Travel Time Costs: Modeling and Analysis for a Circular City," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    4. Jurgis Zagorskas & Marija Burinskienė, 2019. "Challenges Caused by Increased Use of E-Powered Personal Mobility Vehicles in European Cities," Sustainability, MDPI, vol. 12(1), pages 1-13, December.
    5. Matteo della Mura & Serena Failla & Nicolò Gori & Alfonso Micucci & Filippo Paganelli, 2022. "E-Scooter Presence in Urban Areas: Are Consistent Rules, Paying Attention and Smooth Infrastructure Enough for Safety?," Sustainability, MDPI, vol. 14(21), pages 1-36, November.
    6. Helena Sustar & Miloš N. Mladenović & Moshe Givoni, 2020. "The Landscape of Envisioning and Speculative Design Methods for Sustainable Mobility Futures," Sustainability, MDPI, vol. 12(6), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pangbourne, Kate & Mladenović, Miloš N. & Stead, Dominic & Milakis, Dimitris, 2020. "Questioning mobility as a service: Unanticipated implications for society and governance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 35-49.
    2. Tom Storme & Corneel Casier & Hossein Azadi & Frank Witlox, 2021. "Impact Assessments of New Mobility Services: A Critical Review," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    3. Cláudia A. Soares Machado & Nicolas Patrick Marie De Salles Hue & Fernando Tobal Berssaneti & José Alberto Quintanilha, 2018. "An Overview of Shared Mobility," Sustainability, MDPI, vol. 10(12), pages 1-21, November.
    4. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
    5. Wen, Xiao & Ranjbari, Andisheh & Qi, Fan & Clewlow, Regina R. & MacKenzie, Don, 2021. "Challenges in credibly estimating the travel demand effects of mobility services," Transport Policy, Elsevier, vol. 103(C), pages 224-235.
    6. Alejandro Tirachini, 2020. "Ride-hailing, travel behaviour and sustainable mobility: an international review," Transportation, Springer, vol. 47(4), pages 2011-2047, August.
    7. Loa, Patrick & Hossain, Sanjana & Liu, Yicong & Nurul Habib, Khandker, 2022. "How has the COVID-19 pandemic affected the use of ride-sourcing services? An empirical evidence-based investigation for the Greater Toronto Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 46-62.
    8. Gabriel Dias & Elisabete Arsenio & Paulo Ribeiro, 2021. "The Role of Shared E-Scooter Systems in Urban Sustainability and Resilience during the Covid-19 Mobility Restrictions," Sustainability, MDPI, vol. 13(13), pages 1-19, June.
    9. Athena Roumboutsos & Ioanna Pagoni & Athena Tsirimpa & Amalia Polydoropoulou, 2021. "An Ecosystem Innovation Framework: Assessing Mobility as a Service in Budapest," Sustainability, MDPI, vol. 13(7), pages 1-19, March.
    10. Sörensen, Leif & Bossert, Andreas & Jokinen, Jani-Pekka & Schlüter, Jan, 2021. "How much flexibility does rural public transport need? – Implications from a fully flexible DRT system," Transport Policy, Elsevier, vol. 100(C), pages 5-20.
    11. Liu, Yining & Ouyang, Yanfeng, 2021. "Mobility service design via joint optimization of transit networks and demand-responsive services," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 22-41.
    12. Mehdizadeh, Milad & Nordfjaern, Trond & Klöckner, Christian A., 2022. "A systematic review of the agent-based modelling/simulation paradigm in mobility transition," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    13. Marsden, Greg & Docherty, Iain & Dowling, Robyn, 2020. "Parking futures: Curbside management in the era of ‘new mobility’ services in British and Australian cities," Land Use Policy, Elsevier, vol. 91(C).
    14. Yanwei Li & Liang Ma, 2019. "What drives the governance of ridesharing? A fuzzy-set QCA of local regulations in China," Policy Sciences, Springer;Society of Policy Sciences, vol. 52(4), pages 601-624, December.
    15. Loa, Patrick & Nurul Habib, Khandker, 2021. "Examining the influence of attitudinal factors on the use of ride-hailing services in Toronto," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 13-28.
    16. Ed Burton & David John Edwards & Chris Roberts & Nicholas Chileshe & Joseph H. K. Lai, 2021. "Delineating the Implications of Dispersing Teams and Teleworking in an Agile UK Construction Sector," Sustainability, MDPI, vol. 13(17), pages 1-21, September.
    17. Ruhrort, Lisa, 2020. "Reassessing the Role of Shared Mobility Services in a Transport Transition: Can They Contribute the Rise of an Alternative Socio-Technical Regime of Mobility?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(19), pages 1-1.
    18. Melinda Jászberényi & Márk Miskolczi, 2020. "Danube Cruise Tourism as a Niche Product—An Overview of the Current Supply and Potential," Sustainability, MDPI, vol. 12(11), pages 1-22, June.
    19. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    20. Adam Millard-Ball & Liwei Liu & Whitney Hansen & Drew Cooper & Joe Castiglione, 2023. "Where ridehail drivers go between trips," Transportation, Springer, vol. 50(5), pages 1959-1981, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4141-:d:182008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.