IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5745-d1522760.html
   My bibliography  Save this article

Evaluating Energy Efficiency Parameters of Municipal Wastewater Treatment Plants in Terms of Management Strategies and Carbon Footprint Reduction: Insights from Three Polish Facilities

Author

Listed:
  • Iwona Kłosok-Bazan

    (Department of Thermal Engineering and Industrial Facilities, Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland)

  • Adam Rak

    (Department of Thermal Engineering and Industrial Facilities, Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland)

  • Joanna Boguniewicz-Zabłocka

    (Department of Thermal Engineering and Industrial Facilities, Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland)

  • Anna Kuczuk

    (Department of Thermal Engineering and Industrial Facilities, Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland)

  • Andrea G. Capodaglio

    (Department of Civil Engineering & Architecture, University of Pavia, 27100 Pavia, Italy)

Abstract

Water management in cities is a critical factor for sustainable growth and development. Satisfying the current needs with respect for the future is not possible without properly managed water and wastewater systems. An essential element of wastewater systems is the wastewater treatment plant (WWTP). The nexus between wastewater treatments and energy demand is a well-known problem. In times of energy crisis, effective energy management in this critical infrastructure is a key task. The purpose of this article is to analyze WWTPs’ energy consumption with regard to proposed management strategies for managers, designers and decision makers. A detailed analysis of WWTP operational parameters and a proposal of improvement actions will be useful for applicability and benchmarking studies. Estimating the carbon footprint (CF) of selected WWTPs considering the indirect emissions due to energy consumption is an important step for developing energy neutrality of WWTPs. Due to the desire to deepen research in the area of a complex phenomenon, which is the energy management system in WWTPs, the research undertaken herein is based on the case study method of three water and sewage companies operating southwestern Poland. Each urban area has different specificities, natural conditions and needs. The presented results of the analyses may be the basis for developing directions for changes in national policy, other benchmarking studies, and improving the energy management system in WWTPs.

Suggested Citation

  • Iwona Kłosok-Bazan & Adam Rak & Joanna Boguniewicz-Zabłocka & Anna Kuczuk & Andrea G. Capodaglio, 2024. "Evaluating Energy Efficiency Parameters of Municipal Wastewater Treatment Plants in Terms of Management Strategies and Carbon Footprint Reduction: Insights from Three Polish Facilities," Energies, MDPI, vol. 17(22), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5745-:d:1522760
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5745/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5745/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McKane, Aimee & Therkelsen, Peter & Scodel, Anna & Rao, Prakash & Aghajanzadeh, Arian & Hirzel, Simon & Zhang, Ruiqin & Prem, Richard & Fossa, Alberto & Lazarevska, Ana M. & Matteini, Marco & Schreck,, 2017. "Predicting the quantifiable impacts of ISO 50001 on climate change mitigation," Energy Policy, Elsevier, vol. 107(C), pages 278-288.
    2. Longo, Stefano & d’Antoni, Benedetto Mirko & Bongards, Michael & Chaparro, Antonio & Cronrath, Andreas & Fatone, Francesco & Lema, Juan M. & Mauricio-Iglesias, Miguel & Soares, Ana & Hospido, Almudena, 2016. "Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement," Applied Energy, Elsevier, vol. 179(C), pages 1251-1268.
    3. Elzbieta Pawlowska & Joanna Machnik-Slomka & Iwona Klosok-Bazan & Miroslava Gono & Radomir Gono, 2021. "Corporate Social Responsibility of Water and Sanitation Company in the Czech Republic—Case Study," Energies, MDPI, vol. 14(13), pages 1-24, July.
    4. Riccardo Tinivella & Riccardo Bargiggia & Giampiero Zanoni & Arianna Callegari & Andrea G. Capodaglio, 2023. "High-Strength, Chemical Industry Wastewater Treatment Feasibility Study for Energy Recovery," Sustainability, MDPI, vol. 15(23), pages 1-23, November.
    5. Valeria Costantini & Valentina Morando & Christopher Olk & Luca Tausch, 2022. "Fuelling the Fire: Rethinking European Policy in Times of Energy and Climate Crises," Energies, MDPI, vol. 15(20), pages 1-18, October.
    6. Andrea G. Capodaglio & Gustaf Olsson, 2019. "Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    2. Andrea G. Capodaglio & Gustaf Olsson, 2019. "Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    3. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    4. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    5. Capelo, Bernardo & Pérez-Sánchez, Modesto & Fernandes, João F.P. & Ramos, Helena M. & López-Jiménez, P. Amparo & Branco, P.J. Costa, 2017. "Electrical behaviour of the pump working as turbine in off grid operation," Applied Energy, Elsevier, vol. 208(C), pages 302-311.
    6. Daniele Cecconet & Jakub Raček & Arianna Callegari & Petr Hlavínek, 2019. "Energy Recovery from Wastewater: A Study on Heating and Cooling of a Multipurpose Building with Sewage-Reclaimed Heat Energy," Sustainability, MDPI, vol. 12(1), pages 1-11, December.
    7. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    8. Mehdi Sharif Shourjeh & Przemysław Kowal & Jakub Drewnowski & Bartosz Szeląg & Aleksandra Szaja & Grzegorz Łagód, 2020. "Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization," Energies, MDPI, vol. 13(21), pages 1-21, November.
    9. Nikolaos Tsalas & Spyridon K. Golfinopoulos & Stylianos Samios & Georgios Katsouras & Konstantinos Peroulis, 2024. "Optimization of Energy Consumption in a Wastewater Treatment Plant: An Overview," Energies, MDPI, vol. 17(12), pages 1-43, June.
    10. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    11. Lam, Chor-Man & Leng, Ling & Chen, Pi-Cheng & Lee, Po-Heng & Hsu, Shu-Chien, 2017. "Eco-efficiency analysis of non-potable water systems in domestic buildings," Applied Energy, Elsevier, vol. 202(C), pages 293-307.
    12. Jose M. Vindel & Estrella Trincado & Antonio Sánchez-Bayón, 2021. "European Union Green Deal and the Opportunity Cost of Wastewater Treatment Projects," Energies, MDPI, vol. 14(7), pages 1-18, April.
    13. Guven, Huseyin & Ersahin, Mustafa Evren & Dereli, Recep Kaan & Ozgun, Hale & Isik, Isa & Ozturk, Izzet, 2019. "Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal wastewater and food waste," Energy, Elsevier, vol. 172(C), pages 1027-1036.
    14. Krzysztof Gaska & Agnieszka Generowicz, 2020. "SMART Computational Solutions for the Optimization of Selected Technology Processes as an Innovation and Progress in Improving Energy Efficiency of Smart Cities—A Case Study," Energies, MDPI, vol. 13(13), pages 1-41, June.
    15. Luca Tausch & Jeffrey Althouse, 2024. "Towards a theory of ecologically unequal exchange (EUE) as a multi-tiered hierarchy," FMM Working Paper 100-2024, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    16. Benedetti, Miriam & Bonfa', Francesca & Bertini, Ilaria & Introna, Vito & Ubertini, Stefano, 2018. "Explorative study on Compressed Air Systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 227(C), pages 436-448.
    17. Michela Gallo & Desara Malluta & Adriana Del Borghi & Erica Gagliano, 2024. "A Critical Review on Methodologies for the Energy Benchmarking of Wastewater Treatment Plants," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    18. Milena Nebojsa Rajić & Rado M. Maksimović & Pedja Milosavljević, 2022. "Energy Management Model for Sustainable Development in Hotels within WB6," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    19. Kirchem, Dana & Lynch, Muireann Á. & Bertsch, Valentin & Casey, Eoin, 2020. "Modelling demand response with process models and energy systems models: Potential applications for wastewater treatment within the energy-water nexus," Applied Energy, Elsevier, vol. 260(C).
    20. Magdalena Budych-Gorzna & Beata Szatkowska & Lukasz Jaroszynski & Bjarne Paulsrud & Ewelina Jankowska & Tymoteusz Jaroszynski & Piotr Oleskowicz-Popiel, 2021. "Towards an Energy Self-Sufficient Resource Recovery Facility by Improving Energy and Economic Balance of a Municipal WWTP with Chemically Enhanced Primary Treatment," Energies, MDPI, vol. 14(5), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5745-:d:1522760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.