IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v366y2024ics0306261924006755.html
   My bibliography  Save this article

Water-energy trajectories for urban water and wastewater reveal the impact of city strategies

Author

Listed:
  • Yan, Guoxin
  • Kenway, Steven J.
  • Lam, Ka Leung
  • Lant, Paul A.

Abstract

The global water industry has a greater emphasis on energy management than ever before. The confluence of rising energy demand and costs, and net-zero greenhouse gas emission targets means the sector must rapidly transition to a new ‘energy future’. Yet, few cities have assessed the long-term energy use of their water and wastewater systems. Here, we undertake a novel and integrated assessment of the historical trends of energy use for water and wastewater in three Australian and two US cities, collectively 17 million people. The key research question is what were the historical trends of energy use for water supply and wastewater treatment, and what can we understand about the drivers? The research contributes a first systematic time-series assessment of energy trajectories of both water and wastewater, across multiple cities. Uniquely, it integrates long-term (up to 20 years) energy dynamics in a comparative analysis. The work also contributes a qualitative analysis of driving factors behind the observed energy variations. The time-series analysis (2001−2020) identifies how energy use is evolving through time in widely differing climate, urban and water infrastructure conditions. The cities studied demonstrated downward trends in water use by 30–42% and wastewater collected by 5–30%, primarily due to water conservation and drought-related restrictions. Annual per-capita energy use for water supply reduced in Los Angeles (−58%, from 276 to 116.5 kWh/p/a), San Diego (−59%, from 503.7 to 204.2 kWh/p/a), Sydney (−26%, from 40.6 to 30.1 kWh/p/a) and increased in Melbourne (+859%, from 15.7 to 150.6 kWh/p/a) and Perth (+139%, from 118.1 to 281.9 kWh/p/a). Compared to water supply, energy use for wastewater was far more stable (it varied between 45 and 85 kWh/p/a), and not the crucial contributor to overall energy use dynamics. The significant increase in seawater desalination is identified as the primary driver of increased energy use in the three Australian cities. To offset this huge demand, developing renewable energy generation emerged as the key strategy. It causes high fluctuation of renewable energy use shares (Sydney: 317 GWh, accounting for 48.5% energy use for water and wastewater in 2011; compared to 19 GWh, accounting for only 2.5% in 2008). In contrast, both Los Angeles and San Diego managed to considerably reduce energy use by decreasing their imported water volume and energy intensity (the result of an adjusted supply portfolio). However, the absence of consistently comprehensive water/energy/renewable energy data remains a significant hurdle for a thorough quantitative analysis of drivers. Given these observations, it is evident that detailed quantitative analysis for influencing factors (e.g. water use, climate, infrastructure upgrading, sustainability targets), requires separately reported energy use for both water supply and wastewater, reported water from categorized sources and significant other data. By addressing these issues, we can have a clear path towards an energy-efficient, sustainable urban water system with net-zero emissions.

Suggested Citation

  • Yan, Guoxin & Kenway, Steven J. & Lam, Ka Leung & Lant, Paul A., 2024. "Water-energy trajectories for urban water and wastewater reveal the impact of city strategies," Applied Energy, Elsevier, vol. 366(C).
  • Handle: RePEc:eee:appene:v:366:y:2024:i:c:s0306261924006755
    DOI: 10.1016/j.apenergy.2024.123292
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924006755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chunyang He & Zhifeng Liu & Jianguo Wu & Xinhao Pan & Zihang Fang & Jingwei Li & Brett A. Bryan, 2021. "Future global urban water scarcity and potential solutions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Wang, Hongtao & Yang, Yi & Keller, Arturo A. & Li, Xiang & Feng, Shijin & Dong, Ya-nan & Li, Fengting, 2016. "Comparative analysis of energy intensity and carbon emissions in wastewater treatment in USA, Germany, China and South Africa," Applied Energy, Elsevier, vol. 184(C), pages 873-881.
    3. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    4. Longo, Stefano & d’Antoni, Benedetto Mirko & Bongards, Michael & Chaparro, Antonio & Cronrath, Andreas & Fatone, Francesco & Lema, Juan M. & Mauricio-Iglesias, Miguel & Soares, Ana & Hospido, Almudena, 2016. "Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement," Applied Energy, Elsevier, vol. 179(C), pages 1251-1268.
    5. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    6. Wakeel, Muhammad & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2016. "Energy consumption for water use cycles in different countries: A review," Applied Energy, Elsevier, vol. 178(C), pages 868-885.
    7. Strazzabosco, A. & Kenway, S.J. & Conrad, S.A. & Lant, P.A., 2021. "Renewable electricity generation in the Australian water industry: Lessons learned and challenges for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Angineh Zohrabian & Kelly T. Sanders, 2020. "The Energy Trade-Offs of Transitioning to a Locally Sourced Water Supply Portfolio in the City of Los Angeles," Energies, MDPI, vol. 13(21), pages 1-19, October.
    9. Aleh Cherp & Vadim Vinichenko & Jale Tosun & Joel A. Gordon & Jessica Jewell, 2021. "National growth dynamics of wind and solar power compared to the growth required for global climate targets," Nature Energy, Nature, vol. 6(7), pages 742-754, July.
    10. Mini, C. & Hogue, T.S. & Pincetl, S., 2015. "The effectiveness of water conservation measures on summer residential water use in Los Angeles, California," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 136-145.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mngereza Miraji & Xi Li & Jie Liu & Chunmiao Zheng, 2019. "Evaluation of Water and Energy Nexus in Wami Ruvu River Basin, Tanzania," Sustainability, MDPI, vol. 11(11), pages 1-12, June.
    2. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    3. Huang, Runyao & Shen, Ziheng & Wang, Hongtao & Xu, Jin & Ai, Zisheng & Zheng, Hongyuan & Liu, Runxi, 2021. "Evaluating the energy efficiency of wastewater treatment plants in the Yangtze River Delta: Perspectives on regional discrepancies," Applied Energy, Elsevier, vol. 297(C).
    4. Longo, S. & Mauricio-Iglesias, M. & Soares, A. & Campo, P. & Fatone, F. & Eusebi, A.L. & Akkersdijk, E. & Stefani, L. & Hospido, A., 2019. "ENERWATER – A standard method for assessing and improving the energy efficiency of wastewater treatment plants," Applied Energy, Elsevier, vol. 242(C), pages 897-910.
    5. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    6. Paulami De & Mrinmoy Majumder, 2020. "Allocation of energy in surface water treatment plants for maximum energy conservation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3347-3370, April.
    7. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    8. Velasquez-Orta, Sharon B. & Heidrich, Oliver & Black, Ken & Graham, David, 2018. "Retrofitting options for wastewater networks to achieve climate change reduction targets," Applied Energy, Elsevier, vol. 218(C), pages 430-441.
    9. Bey, M. & Hamidat, A. & Nacer, T., 2021. "Eco-energetic feasibility study of using grid-connected photovoltaic system in wastewater treatment plant," Energy, Elsevier, vol. 216(C).
    10. Smith, Kate & Liu, Shuming & Liu, Ying & Guo, Shengjie, 2018. "Can China reduce energy for water? A review of energy for urban water supply and wastewater treatment and suggestions for change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 41-58.
    11. Luo, Li & Dzakpasu, Mawuli & Yang, Baichuan & Zhang, Wushou & Yang, Yahong & Wang, Xiaochang C., 2019. "A novel index of total oxygen demand for the comprehensive evaluation of energy consumption for urban wastewater treatment," Applied Energy, Elsevier, vol. 236(C), pages 253-261.
    12. Odabaş Baş, Gözde & Aydınalp Köksal, Merih, 2022. "Environmental and techno-economic analysis of the integration of biogas and solar power systems into urban wastewater treatment plants," Renewable Energy, Elsevier, vol. 196(C), pages 579-597.
    13. Andrea G. Capodaglio & Gustaf Olsson, 2019. "Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    14. Maktabifard, Mojtaba & Al-Hazmi, Hussein E. & Szulc, Paulina & Mousavizadegan, Mohammad & Xu, Xianbao & Zaborowska, Ewa & Li, Xiang & Mąkinia, Jacek, 2023. "Net-zero carbon condition in wastewater treatment plants: A systematic review of mitigation strategies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    15. Zhang, S.Q. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Yang, X., 2023. "Developing a copula-based input-output method for analyzing energy-water nexus of Tajikistan," Energy, Elsevier, vol. 266(C).
    16. Pauline Macharia & Maria Wirth & Paul Yillia & Norbert Kreuzinger, 2021. "Examining the Relative Impact of Drivers on Energy Input for Municipal Water Supply in Africa," Sustainability, MDPI, vol. 13(15), pages 1-27, July.
    17. Adam Masłoń & Joanna Czarnota & Paulina Szczyrba & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2024. "Assessment of Energy Self-Sufficiency of Wastewater Treatment Plants—A Case Study from Poland," Energies, MDPI, vol. 17(5), pages 1-19, March.
    18. Ana Belén Lozano Avilés & Francisco del Cerro Velázquez & Mercedes Llorens Pascual del Riquelme, 2019. "Methodology for Energy Optimization in Wastewater Treatment Plants. Phase I: Control of the Best Operating Conditions," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    19. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Molinos-Senante, María & Sala-Garrido, Ramón, 2018. "Evaluation of energy performance of drinking water treatment plants: Use of energy intensity and energy efficiency metrics," Applied Energy, Elsevier, vol. 229(C), pages 1095-1102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:366:y:2024:i:c:s0306261924006755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.