IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i8p2410-d225243.html
   My bibliography  Save this article

Monitoring of Landscape Transformations within Landscape Parks in Poland in the 21st Century

Author

Listed:
  • Piotr Krajewski

    (Department of Land Management, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland)

Abstract

One of the most problematic forms of nature protection in Poland relates to landscape parks. They include the most valuable landscapes, but the areas within the landscape park still have economic uses. Therefore, the monitoring of landscape changes within landscape parks is necessary in order to properly manage these forms of protection. The main objective of the study was to monitor the scale and nature of landscape transformations within the boundaries of landscape parks in Poland during the period 2000–2018 and to assess the possibility of using the landscape change index (LCI) to monitor the intensity of landscape transformations within this type of protected area. Preliminary analyses of the transformations within all landscape parks in Poland showed an upward trend, both in terms of the number of types of identified landscape changes as well as their area. In spite of the large diversity and degree of transformation in landscape parks, several dominant processes can be observed. The largest number and area of changes during each of the analyzed periods were found in transformations within forest landscapes (temporary and permanent deforestation and forest maturation), which constitute the dominant type of land cover within most of the landscape parks. In open landscapes, changes mainly relate to afforestation and natural succession in meadows, pastures, and arable land, as well as the transformation of arable land into mining areas. Twelve case studies, covering all landscape parks in Lower Silesia, have shown that the LCI is an excellent tool for monitoring the intensity of landscape changes, but it is dependent on the accuracy of the source data. The analyses confirmed that, during the study periods, the changes in all 12 Lower Silesian landscape parks were at a low level, but their particular intensification took place in the years from 2012 to 2018. The highest LCI was found in the area where a natural disaster had occurred (air tornado), which destroyed huge areas of forest in landscape parks. After changes in the forest landscape, the most frequently identified type of change in 2006–2012 was the transformation of non-forest landscapes into forest landscapes. The main reason for such changes was the expansion of forest into abandoned arable land, meadows, and pastures. The use of the Corine Land Cover database to calculate the LCI and monitor the intensity of landscape change revealed a low usability of the database for the year 2000 and a high usability for data from 2006 to 2018.

Suggested Citation

  • Piotr Krajewski, 2019. "Monitoring of Landscape Transformations within Landscape Parks in Poland in the 21st Century," Sustainability, MDPI, vol. 11(8), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2410-:d:225243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/8/2410/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/8/2410/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Walz, Ulrich, 2015. "Indicators to monitor the structural diversity of landscapes," Ecological Modelling, Elsevier, vol. 295(C), pages 88-106.
    2. Frayer, Jens & Müller, Daniel & Sun, Zhanli & Munroe, Darla K. & Xu, Jianchu, 2014. "Processes Underlying 50 Years of Local Forest-Cover Change in Yunnan, China," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 5(12), pages 3257-3273.
    3. Piotr Krajewski & Iga Solecka & Karol Mrozik, 2018. "Forest Landscape Change and Preliminary Study on Its Driving Forces in Ślęża Landscape Park (Southwestern Poland) in 1883–2013," Sustainability, MDPI, vol. 10(12), pages 1-21, November.
    4. Konkoly-Gyuró, Éva, 2018. "Conceptualisation and perception of the landscape and its changes in a transboundary area. A case study of the Southern German-French borderland," Land Use Policy, Elsevier, vol. 79(C), pages 556-574.
    5. Kienast, Felix & Frick, Jacqueline & van Strien, Maarten J. & Hunziker, Marcel, 2015. "The Swiss Landscape Monitoring Program – A comprehensive indicator set to measure landscape change," Ecological Modelling, Elsevier, vol. 295(C), pages 136-150.
    6. Dan Yu & Dongyan Wang & Wenbo Li & Shuhan Liu & Yuanli Zhu & Wenjun Wu & Yongheng Zhou, 2018. "Decreased Landscape Ecological Security of Peri-Urban Cultivated Land Following Rapid Urbanization: An Impediment to Sustainable Agriculture," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
    7. Solecka, Iga & Raszka, Beata & Krajewski, Piotr, 2018. "Landscape analysis for sustainable land use policy: A case study in the municipality of Popielów, Poland," Land Use Policy, Elsevier, vol. 75(C), pages 116-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grzegorz Budzik & Piotr Krajewski, 2021. "Assessment of Landscape Character and Absorptivity Based on Digital Terrain Model Analysis—Case Study of Jelenia Góra City in Poland," Sustainability, MDPI, vol. 13(14), pages 1-26, July.
    2. Jun Wang & Lichun Sui & Xiaomei Yang & Zhihua Wang & Dazhuan Ge & Junmei Kang & Fengshuo Yang & Yueming Liu & Bin Liu, 2019. "Economic Globalization Impacts on the Ecological Environment of Inland Developing Countries: A Case Study of Laos from the Perspective of the Land Use/Cover Change," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    3. Chun-Lin Lee & Chiung-Hsin Wang & Chun-Hung Lee & Supasit Sriarkarin, 2019. "Evaluating the Public’s Preferences toward Sustainable Planning under Climate and Land Use Change in Forest Parks," Sustainability, MDPI, vol. 11(11), pages 1-18, June.
    4. Huilian Han & Hui Li, 2020. "Coupling Coordination Evaluation between Population and Land Urbanization in Ha-Chang Urban Agglomeration," Sustainability, MDPI, vol. 12(1), pages 1-23, January.
    5. Krzysztof Badora & Radosław Wróbel, 2020. "Changes in the Spatial Structure of the Landscape of Isolated Forest Complexes in the 19th and 20th Centuries and Their Potential Effects on Supporting Ecosystem Services Related to the Protection of ," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    6. Peng Tian & Jialin Li & Hongbo Gong & Ruiliang Pu & Luodan Cao & Shuyao Shao & Zuoqi Shi & Xiuli Feng & Lijia Wang & Riuqing Liu, 2019. "Research on Land Use Changes and Ecological Risk Assessment in Yongjiang River Basin in Zhejiang Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    7. Walter Musakwa & Trynos Gumbo & Gaynor Paradza & Ephraim Mpofu & Nesisa Analisa Nyathi & Ntlakala B. Selamolela, 2020. "Partnerships and Stakeholder Participation in the Management of National Parks: Experiences of the Gonarezhou National Park in Zimbabwe," Land, MDPI, vol. 9(11), pages 1-17, October.
    8. Walter Musakwa & Shuai Wang & Fangli Wei & Olgah Lerato Malapane & Masala Makumule Thomas & Sydney Mavengahama & Hongwei Zeng & Bingfang Wu & Wenwu Zhao & Nesisa Analisa Nyathi & Zama Eric Mashimbye &, 2020. "Survey of Community Livelihoods and Landscape Change along the Nzhelele and Levuvhu River Catchments in Limpopo Province, South Africa," Land, MDPI, vol. 9(3), pages 1-21, March.
    9. Michaela Žoncová & Pavel Hronček & Bohuslava Gregorová, 2020. "Mapping of the Land Cover Changes in High Mountains of Western Carpathians between 1990–2018: Case Study of the Low Tatras National Park (Slovakia)," Land, MDPI, vol. 9(12), pages 1-20, December.
    10. Sylla, Marta, 2024. "The application of ecosystem accounting principles at the local scale for a protected landscape: A case study of the Sleza Landscape Park in Poland," Ecosystem Services, Elsevier, vol. 66(C).
    11. Dongwoo Lee & Kyushik Oh, 2019. "The Green Infrastructure Assessment System (GIAS) and Its Applications for Urban Development and Management," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    12. Jingkun Niu & Haifeng Du, 2021. "Coordinated Development Evaluation of Population–Land–Industry in Counties of Western China: A Case Study of Shaanxi Province," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    13. Alina Kulczyk-Dynowska & Agnieszka Stacherzak, 2020. "Selected Elements of Technical Infrastructure in Municipalities Territorially Connected with National Parks," Sustainability, MDPI, vol. 12(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Krajewski & Iga Solecka & Karol Mrozik, 2018. "Forest Landscape Change and Preliminary Study on Its Driving Forces in Ślęża Landscape Park (Southwestern Poland) in 1883–2013," Sustainability, MDPI, vol. 10(12), pages 1-21, November.
    2. Dongwoo Lee & Kyushik Oh, 2019. "The Green Infrastructure Assessment System (GIAS) and Its Applications for Urban Development and Management," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    3. Michał Sobala, 2020. "Mountain Meadows and Glades of the Carpathians—Type or Element of Landscape? The Problem of Delimitation and Typology of Mountain Pasture Landscapes," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    4. Walter Musakwa & Shuai Wang & Fangli Wei & Olgah Lerato Malapane & Masala Makumule Thomas & Sydney Mavengahama & Hongwei Zeng & Bingfang Wu & Wenwu Zhao & Nesisa Analisa Nyathi & Zama Eric Mashimbye &, 2020. "Survey of Community Livelihoods and Landscape Change along the Nzhelele and Levuvhu River Catchments in Limpopo Province, South Africa," Land, MDPI, vol. 9(3), pages 1-21, March.
    5. Lucie Kupková & Ivan Bičík & Leoš Jeleček, 2021. "At the Crossroads of European Landscape Changes: Major Processes of Landscape Change in Czechia since the Middle of the 19th Century and Their Driving Forces," Land, MDPI, vol. 10(1), pages 1-25, January.
    6. Deslatte, Aaron & Szmigiel-Rawska, Katarzyna & Tavares, António F. & Ślawska, Justyna & Karsznia, Izabela & Łukomska, Julita, 2022. "Land use institutions and social-ecological systems: A spatial analysis of local landscape changes in Poland," Land Use Policy, Elsevier, vol. 114(C).
    7. Huilian Han & Hui Li, 2020. "Coupling Coordination Evaluation between Population and Land Urbanization in Ha-Chang Urban Agglomeration," Sustainability, MDPI, vol. 12(1), pages 1-23, January.
    8. Jinkai Li & Jueying Chen & Heguang Liu, 2021. "Sustainable Agricultural Total Factor Productivity and Its Spatial Relationship with Urbanization in China," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    9. Simensen, Trond & Halvorsen, Rune & Erikstad, Lars, 2018. "Methods for landscape characterisation and mapping: A systematic review," Land Use Policy, Elsevier, vol. 75(C), pages 557-569.
    10. Rafael González-Val, 2021. "The Probability Distribution of Worldwide Forest Areas," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    11. Shirvani Dastgerdi, Ahmadreza & Sargolini, Massimo & Broussard Allred, Shorna & Chatrchyan, Allison Morrill & Drescher, Michael & DeGeer, Christopher, 2022. "Climate change risk reduction in cultural landscapes: Insights from Cinque Terre and Waterloo," Land Use Policy, Elsevier, vol. 123(C).
    12. Monteleone, Massimo & Cammerino, Anna Rita Bernadette & Libutti, Angela, 2018. "Agricultural “greening” and cropland diversification trends: Potential contribution of agroenergy crops in Capitanata (South Italy)," Land Use Policy, Elsevier, vol. 70(C), pages 591-600.
    13. Iga Solecka & Dietmar Bothmer & Arkadiusz Głogowski, 2019. "Recognizing Landscapes for the Purpose of Sustainable Development—Experiences from Poland," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    14. Hua Xia & Shidong Ge & Xinyu Zhang & Gunwoo Kim & Yakai Lei & Yang Liu, 2021. "Spatiotemporal Dynamics of Green Infrastructure in an Agricultural Peri-Urban Area: A Case Study of Baisha District in Zhengzhou, China," Land, MDPI, vol. 10(8), pages 1-21, July.
    15. Li, Wenbo & Wang, Dongyan & Li, Hong & Wang, Jianguo & Zhu, Yuanli & Yang, Yuewen, 2019. "Quantifying the spatial arrangement of underutilized land in a rapidly urbanized rust belt city: The case of Changchun City," Land Use Policy, Elsevier, vol. 83(C), pages 113-123.
    16. Tianyue Ma & Jing Li & Shuang Bai & Fangzhe Chang & Zhai Jiang & Xingguang Yan & Jiahao Shao, 2022. "Optimization and Construction of Ecological Security Patterns Based on Natural and Cultivated Land Disturbance," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    17. Yajuan Wang & Xi Wu & Hongbo Zhu, 2022. "Spatio-Temporal Pattern and Spatial Disequilibrium of Cultivated Land Use Efficiency in China: An Empirical Study Based on 342 Prefecture-Level Cities," Land, MDPI, vol. 11(10), pages 1-15, October.
    18. Chopin, Pierre & Blazy, Jean-Marc & Guindé, Loïc & Wery, Jacques & Doré, Thierry, 2017. "A framework for designing multi-functional agricultural landscapes: Application to Guadeloupe Island," Agricultural Systems, Elsevier, vol. 157(C), pages 316-329.
    19. Jose Don T. De Alban & Graham W. Prescott & Kevin M. Woods & Johanness Jamaludin & Kyaw Thinn Latt & Cheng Ling Lim & Aye Chan Maung & Edward L. Webb, 2019. "Integrating Analytical Frameworks to Investigate Land-Cover Regime Shifts in Dynamic Landscapes," Sustainability, MDPI, vol. 11(4), pages 1-23, February.
    20. Yifang Wang & Linlin Cheng & Yang Zheng, 2023. "An Adjusted Landscape Ecological Security of Cultivated Land Evaluation Method Based on the Interaction between Cultivated Land and Surrounding Land Types," Land, MDPI, vol. 12(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2410-:d:225243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.