IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i8p2301-d223512.html
   My bibliography  Save this article

Electric Charging Demand Location Model—A User- and Destination-Based Locating Approach for Electric Vehicle Charging Stations

Author

Listed:
  • Raphaela Pagany

    (Institute for Applied Informatics, Deggendorf Institute of Technology, Grafenauer Straße 22, 94078 Freyung, Germany
    Interfaculty Department of Geoinformatics Z_GIS, University of Salzburg, Schillerstraße 50, 5020 Salzburg, Austria)

  • Anna Marquardt

    (Institute for Applied Informatics, Deggendorf Institute of Technology, Grafenauer Straße 22, 94078 Freyung, Germany)

  • Roland Zink

    (Institute for Applied Informatics, Deggendorf Institute of Technology, Grafenauer Straße 22, 94078 Freyung, Germany)

Abstract

In recent years, with the increased focus on climate protection, electric vehicles (EVs) have become a relevant alternative to conventional motorized vehicles. Even though the market share of EVs is still comparatively low, there are ongoing considerations for integrating EVs in transportation systems. Along with pushing EV sales numbers, the installation of charging infrastructure is necessary. This paper presents a user- and destination-based approach for locating charging stations (CSs) for EVs—the electric charging demand location (ECDL) model. With regard to the daily activities of potential EV users, potential positions for CSs are derived on a micro-location level in public and semipublic spaces using geographic information systems (GIS). Depending on the vehicle users’ dwell times and visiting frequencies at potential points of interest (POIs), the charging demand at such locations is calculated. The model is mainly based on a survey analyzing the average time spent per daily activity, regional data about driver and vehicle ownership numbers, and the georeferenced localization of regularly visited POIs. Optimal sites for parking and charging EVs within the POIs neighborhood are selected based on walking distance calculations, including spatial neighborhood effects, such as the density of POIs. In a case study in southeastern Germany, the model identifies concrete places with the highest overall demand for CSs, resulting in an extensive coverage of the electric energy demand while considering as many destinations within the acceptable walking distance threshold as possible.

Suggested Citation

  • Raphaela Pagany & Anna Marquardt & Roland Zink, 2019. "Electric Charging Demand Location Model—A User- and Destination-Based Locating Approach for Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2301-:d:223512
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/8/2301/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/8/2301/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Millward, Hugh & Spinney, Jamie & Scott, Darren, 2013. "Active-transport walking behavior: destinations, durations, distances," Journal of Transport Geography, Elsevier, vol. 28(C), pages 101-110.
    2. Namdeo, A. & Tiwary, A. & Dziurla, R., 2014. "Spatial planning of public charging points using multi-dimensional analysis of early adopters of electric vehicles for a city region," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 188-200.
    3. Bioly, Sascha & Kuchshaus, Viktor & Klumpp, Matthias, 2012. "Elektromobilität und Ladesäulenstandortbestimmung: Eine exemplarische Analyse mit dem Beispiel der Stadt Duisburg," ild Schriftenreihe 24, FOM Hochschule für Oekonomie & Management, Institut für Logistik- & Dienstleistungsmanagement (ild).
    4. Andrenacci, N. & Ragona, R. & Valenti, G., 2016. "A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas," Applied Energy, Elsevier, vol. 182(C), pages 39-46.
    5. Morrissey, Patrick & Weldon, Peter & O’Mahony, Margaret, 2016. "Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour," Energy Policy, Elsevier, vol. 89(C), pages 257-270.
    6. Asamer, Johannes & Reinthaler, Martin & Ruthmair, Mario & Straub, Markus & Puchinger, Jakob, 2016. "Optimizing charging station locations for urban taxi providers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 233-246.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mylène van der Koogh & Emile Chappin & Renée Heller & Zofia Lukszo, 2021. "Are We Satisfying the Right Conditions for the Mobility Transition? A Review and Evaluation of the Dutch Urban Mobility Policies," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    2. Yi, Tao & Cheng, Xiaobin & Peng, Peng, 2022. "Two-stage optimal allocation of charging stations based on spatiotemporal complementarity and demand response: A framework based on MCS and DBPSO," Energy, Elsevier, vol. 239(PC).
    3. Bolong Yun & Daniel (Jian) Sun & Yingjie Zhang & Siwen Deng & Jing Xiong, 2019. "A Charging Location Choice Model for Plug-In Hybrid Electric Vehicle Users," Sustainability, MDPI, vol. 11(20), pages 1-23, October.
    4. Mario Porru & Alessandro Serpi & Mario Mureddu & Alfonso Damiano, 2020. "A Multistage Design Procedure for Planning and Implementing Public Charging Infrastructures for Electric Vehicles," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    5. Shuping Wu & Zan Yang, 2020. "Availability of Public Electric Vehicle Charging Pile and Development of Electric Vehicle: Evidence from China," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    6. Roland Zink & Javier Valdes & Jane Wuth, 2020. "Prioritizing the Chicken or Egg? Electric Vehicle Purchase and Charging Infrastructure Subsidies in Germany," Politics and Governance, Cogitatio Press, vol. 8(3), pages 185-198.
    7. Emilia M. Szumska & Rafał S. Jurecki, 2021. "Parameters Influencing on Electric Vehicle Range," Energies, MDPI, vol. 14(16), pages 1-23, August.
    8. Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    2. Schmidt, Marc & Staudt, Philipp & Weinhardt, Christof, 2020. "Evaluating the importance and impact of user behavior on public destination charging of electric vehicles," Applied Energy, Elsevier, vol. 258(C).
    3. He, Sylvia Y. & Kuo, Yong-Hong & Sun, Ka Kit, 2022. "The spatial planning of public electric vehicle charging infrastructure in a high-density city using a contextualised location-allocation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 21-44.
    4. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    5. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    6. Wolbertus, Rick & Kroesen, Maarten & van den Hoed, Robert & Chorus, Caspar, 2018. "Fully charged: An empirical study into the factors that influence connection times at EV-charging stations," Energy Policy, Elsevier, vol. 123(C), pages 1-7.
    7. Weihua Wu & Jieyun Wei & Eun-Young Nam & Yifan Zhang & Dongphil Chun, 2024. "Data Drive—Charging Behavior of Electric Vehicle Users with Variable Roles," Sustainability, MDPI, vol. 16(11), pages 1-18, June.
    8. Wang, Hua & Zhao, De & Cai, Yutong & Meng, Qiang & Ong, Ghim Ping, 2021. "Taxi trajectory data based fast-charging facility planning for urban electric taxi systems," Applied Energy, Elsevier, vol. 286(C).
    9. Lin Ma & Yuefan Zhai & Tian Wu, 2019. "Operating Charging Infrastructure in China to Achieve Sustainable Transportation: The Choice between Company-Owned and Franchised Structures," Sustainability, MDPI, vol. 11(6), pages 1-22, March.
    10. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    11. Sikder, Sujit Kumar & Nagarajan, Magesh & Mustafee, Navonil, 2023. "Augmenting EV charging infrastructure towards transformative sustainable cities: An equity-based approach," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    12. Philipp A. Friese & Wibke Michalk & Markus Fischer & Cornelius Hardt & Klaus Bogenberger, 2021. "Charging Point Usage in Germany—Automated Retrieval, Analysis, and Usage Types Explained," Sustainability, MDPI, vol. 13(23), pages 1-26, November.
    13. Andrenacci, N. & Genovese, A. & Ragona, R., 2017. "Determination of the level of service and customer crowding for electric charging stations through fuzzy models and simulation techniques," Applied Energy, Elsevier, vol. 208(C), pages 97-107.
    14. Tsiropoulos, Ioannis & Siskos, Pelopidas & Capros, Pantelis, 2022. "The cost of recharging infrastructure for electric vehicles in the EU in a climate neutrality context: Factors influencing investments in 2030 and 2050," Applied Energy, Elsevier, vol. 322(C).
    15. Fu, Jiali & Nåbo, Arne & Bhatti, Harrison John, 2024. "Locating charging infrastructure for freight transport using multiday travel data," Transport Policy, Elsevier, vol. 152(C), pages 21-28.
    16. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Christos Karolemeas & Stefanos Tsigdinos & Panagiotis G. Tzouras & Alexandros Nikitas & Efthimios Bakogiannis, 2021. "Determining Electric Vehicle Charging Station Location Suitability: A Qualitative Study of Greek Stakeholders Employing Thematic Analysis and Analytical Hierarchy Process," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    18. Helmus, J.R. & Spoelstra, J.C. & Refa, N. & Lees, M. & van den Hoed, R., 2018. "Assessment of public charging infrastructure push and pull rollout strategies: The case of the Netherlands," Energy Policy, Elsevier, vol. 121(C), pages 35-47.
    19. Cláudia A. Soares Machado & Harmi Takiya & Charles Lincoln Kenji Yamamura & José Alberto Quintanilha & Fernando Tobal Berssaneti, 2020. "Placement of Infrastructure for Urban Electromobility: A Sustainable Approach," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    20. Chen, Yu & Lin, Boqiang, 2022. "Are consumers in China’s major cities happy with charging infrastructure for electric vehicles?," Applied Energy, Elsevier, vol. 327(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2301-:d:223512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.