IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v152y2024icp21-28.html
   My bibliography  Save this article

Locating charging infrastructure for freight transport using multiday travel data

Author

Listed:
  • Fu, Jiali
  • Nåbo, Arne
  • Bhatti, Harrison John

Abstract

Vehicle electrification has shown the potential to reduce environmental impacts and greenhouse gas emissions from the transport sector. As electric vehicles (EVs) become increasingly prominent, the efficient placement of charging infrastructure poses a complex challenge that demands careful consideration. This paper delves into the investigation of how travel and parking patterns, derived from empirical data on freight vehicles, influence the optimal distribution of charging infrastructure across the freight network. This paper presents a node-based approach to optimize the allocation of charging infrastructure tailored explicitly for freight transport. The study identifies optimal locations for operator-owned charging infrastructure by leveraging GPS-based data collected from a fleet of freight vehicles operating in the greater Gothenburg metropolitan area. This research aims to enhance our understanding of the charging infrastructure requirements inherent in the freight transport system and provide decision support to logistics companies contemplating the shift from conventional fossil fuel vehicles to electric freight vehicles. The proposed model holds the potential for seamless adaptation to diverse freight transport systems, offering valuable insights to expedite the transition toward fossil-free freight transport on a broader scale.

Suggested Citation

  • Fu, Jiali & Nåbo, Arne & Bhatti, Harrison John, 2024. "Locating charging infrastructure for freight transport using multiday travel data," Transport Policy, Elsevier, vol. 152(C), pages 21-28.
  • Handle: RePEc:eee:trapol:v:152:y:2024:i:c:p:21-28
    DOI: 10.1016/j.tranpol.2024.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X24001045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2024.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Fang & Yang, Jun & Lu, Jianyi, 2018. "The battery charging station location problem: Impact of users’ range anxiety and distance convenience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 1-18.
    2. Andrenacci, N. & Ragona, R. & Valenti, G., 2016. "A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas," Applied Energy, Elsevier, vol. 182(C), pages 39-46.
    3. Asamer, Johannes & Reinthaler, Martin & Ruthmair, Mario & Straub, Markus & Puchinger, Jakob, 2016. "Optimizing charging station locations for urban taxi providers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 233-246.
    4. Ramesh Chandra Majhi & Prakash Ranjitkar & Mingyue Sheng & Grant A. Covic & Doug James Wilson, 2021. "A systematic review of charging infrastructure location problem for electric vehicles," Transport Reviews, Taylor & Francis Journals, vol. 41(4), pages 432-455, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmidt, Marc & Staudt, Philipp & Weinhardt, Christof, 2020. "Evaluating the importance and impact of user behavior on public destination charging of electric vehicles," Applied Energy, Elsevier, vol. 258(C).
    2. Yong, Jin Yi & Tan, Wen Shan & Khorasany, Mohsen & Razzaghi, Reza, 2023. "Electric vehicles destination charging: An overview of charging tariffs, business models and coordination strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Wang, Hua & Zhao, De & Cai, Yutong & Meng, Qiang & Ong, Ghim Ping, 2021. "Taxi trajectory data based fast-charging facility planning for urban electric taxi systems," Applied Energy, Elsevier, vol. 286(C).
    4. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    5. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2019. "A four-step method for electric-vehicle charging facility deployment in a dense city: An empirical study in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 224-237.
    7. Raphaela Pagany & Anna Marquardt & Roland Zink, 2019. "Electric Charging Demand Location Model—A User- and Destination-Based Locating Approach for Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 11(8), pages 1-15, April.
    8. Park, Junseok & Moon, Ilkyeong, 2023. "A facility location problem in a mixed duopoly on networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    9. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    10. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    11. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    12. Davidov, Sreten, 2020. "Optimal charging infrastructure planning based on a charging convenience buffer," Energy, Elsevier, vol. 192(C).
    13. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    14. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    15. Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    16. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    17. Pichamon Keawthong & Veera Muangsin & Chupun Gowanit, 2022. "Location Selection of Charging Stations for Electric Taxis: A Bangkok Case," Sustainability, MDPI, vol. 14(17), pages 1-23, September.
    18. Pourvaziri, H. & Sarhadi, H. & Azad, N. & Afshari, H. & Taghavi, M., 2024. "Planning of electric vehicle charging stations: An integrated deep learning and queueing theory approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    19. Panagiotis Skaloumpakas & Evangelos Spiliotis & Elissaios Sarmas & Alexios Lekidis & George Stravodimos & Dimitris Sarigiannis & Ioanna Makarouni & Vangelis Marinakis & John Psarras, 2022. "A Multi-Criteria Approach for Optimizing the Placement of Electric Vehicle Charging Stations in Highways," Energies, MDPI, vol. 15(24), pages 1-13, December.
    20. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:152:y:2024:i:c:p:21-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.