IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i7p2125-d221384.html
   My bibliography  Save this article

Big Data-Based Evaluation of Urban Parks: A Chinese Case Study

Author

Listed:
  • Zening Xu

    (Institute of Geographic Science and Natural Resources Research, The Key Laboratory of Regional Sustainable Development Analysis and Simulation, CAS, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xiaolu Gao

    (Institute of Geographic Science and Natural Resources Research, The Key Laboratory of Regional Sustainable Development Analysis and Simulation, CAS, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Zhiqiang Wang

    (Institute of Geographic Science and Natural Resources Research, The Key Laboratory of Regional Sustainable Development Analysis and Simulation, CAS, Beijing 100101, China)

  • Jie Fan

    (Institute of Geographic Science and Natural Resources Research, The Key Laboratory of Regional Sustainable Development Analysis and Simulation, CAS, Beijing 100101, China)

Abstract

Urban parks play a key role in urban sustainable development. This paper proposes a method for the evaluation of public parks from the perspective of accessibility and quality. The method includes the data extraction of urban park locations and the delineation of urban built-up areas. The processing of urban park data not only involves the extraction from digital maps, but also the classification of urban parks using a semi-automated model in ArcGIS. The urban area is identified using the Point of Interest (POI) data in digital maps, taking economic and human activities into consideration. The service area and its overlapped time is included in the evaluation indicators. With a clear definition of park and urban built-up area, the evaluation result of urban parks is of great comparability. Taking China as an example, the quality of urban parks in 273 prefecture-level cities has been evaluated. The results show that the average service coverage of urban parks in Chinese cities is 64.8%, and that there are significant disparities between cities with different population sizes and locations. The results suggest the necessity to improve public parks in small-and-medium sized cities and inland areas to strengthen the coordination of urbanization and regional development.

Suggested Citation

  • Zening Xu & Xiaolu Gao & Zhiqiang Wang & Jie Fan, 2019. "Big Data-Based Evaluation of Urban Parks: A Chinese Case Study," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2125-:d:221384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/7/2125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/7/2125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nils-Bastian Heidenreich & Anja Schindler & Stefan Sperlich, 2013. "Bandwidth selection for kernel density estimation: a review of fully automatic selectors," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 403-433, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaqi Du & Rong Zhao, 2022. "Research on the Development of Urban Parks Based on the Perception of Tourists: A Case Study of Taihu Park in Beijing," IJERPH, MDPI, vol. 19(9), pages 1-18, April.
    2. Antonella Pietta & Marco Tononi, 2021. "Re-Naturing the City: Linking Urban Political Ecology and Cultural Ecosystem Services," Sustainability, MDPI, vol. 13(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inés Barbeito & Ricardo Cao & Stefan Sperlich, 2023. "Bandwidth selection for statistical matching and prediction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 418-446, March.
    2. Christoph Lambio & Tillman Schmitz & Richard Elson & Jeffrey Butler & Alexandra Roth & Silke Feller & Nicolai Savaskan & Tobia Lakes, 2023. "Exploring the Spatial Relative Risk of COVID-19 in Berlin-Neukölln," IJERPH, MDPI, vol. 20(10), pages 1-22, May.
    3. Max Köhler & Anja Schindler & Stefan Sperlich, 2014. "A Review and Comparison of Bandwidth Selection Methods for Kernel Regression," International Statistical Review, International Statistical Institute, vol. 82(2), pages 243-274, August.
    4. Peiyuan Zhang & Jiaming Li & Wenzhong Zhang, 2022. "Characteristics of High-Technology Industry Migration within Metropolitan Areas—A Case Study of Beijing Metropolitan Area," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    5. M. Hiabu & E. Mammen & M. D. Martìnez-Miranda & J. P. Nielsen, 2016. "In-sample forecasting with local linear survival densities," Biometrika, Biometrika Trust, vol. 103(4), pages 843-859.
    6. Yicheng Tang & Xinyan Zhu & Wei Guo & Xinyue Ye & Tao Hu & Yaxin Fan & Faming Zhang, 2017. "Non-Homogeneous Diffusion of Residential Crime in Urban China," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    7. D.P. Amali Dassanayake & Igor Volobouev & A. Alexandre Trindade, 2017. "Local orthogonal polynomial expansion for density estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 806-830, October.
    8. José María Sarabia & Faustino Prieto & Vanesa Jordá & Stefan Sperlich, 2020. "A Note on Combining Machine Learning with Statistical Modeling for Financial Data Analysis," Risks, MDPI, vol. 8(2), pages 1-14, April.
    9. Tingting Cheng & Jiti Gao & Xibin Zhang, 2014. "Semiparametric Localized Bandwidth Selection for Kernel Density Estimation," Monash Econometrics and Business Statistics Working Papers 27/14, Monash University, Department of Econometrics and Business Statistics.
    10. El Heda, Khadijetou & Louani, Djamal, 2018. "Optimal bandwidth selection in kernel density estimation for continuous time dependent processes," Statistics & Probability Letters, Elsevier, vol. 138(C), pages 9-19.
    11. Stefan Sperlich, 2022. "Comments on: hybrid semiparametric Bayesian networks," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 335-339, June.
    12. Tingting Cheng & Jiti Gao & Xibin Zhang, 2019. "Nonparametric localized bandwidth selection for Kernel density estimation," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 733-762, August.
    13. Yu Liu & Chen Zeng & Huatai Cui & Yanhua Song, 2018. "Sustainable Land Urbanization and Ecological Carrying Capacity: A Spatially Explicit Perspective," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    14. Xiang Li & Jiang Zhu & Tao Liu & Xiangdong Yin & Jiangchun Yao & Hao Jiang & Bing Bu & Jianlong Yan & Yixuan Li & Zhangcheng Chen, 2023. "Quota and Space Allocations of New Urban Land Supported by Urban Growth Simulations: A Case Study of Guangzhou City, China," Land, MDPI, vol. 12(6), pages 1-21, June.
    15. Dai, Xinliang & Qu, Sheng & Sui, Hao & Wu, Pingbo, 2022. "Reliability modelling of wheel wear deterioration using conditional bivariate gamma processes and Bayesian hierarchical models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Joseph Ngatchou-Wandji & Marwa Ltaifa & Didier Alain Njamen Njomen & Jia Shen, 2022. "Nonparametric Estimation of the Density Function of the Distribution of the Noise in CHARN Models," Mathematics, MDPI, vol. 10(4), pages 1-20, February.
    17. Liu, Zhi-Feng & Liu, You-Yuan & Chen, Xiao-Rui & Zhang, Shu-Rui & Luo, Xing-Fu & Li, Ling-Ling & Yang, Yi-Zhou & You, Guo-Dong, 2024. "A novel deep learning-based evolutionary model with potential attention and memory decay-enhancement strategy for short-term wind power point-interval forecasting," Applied Energy, Elsevier, vol. 360(C).
    18. Qidi Dong & Jun Cai & Linjia Wu & Di Li & Qibing Chen, 2022. "Quantitative Identification of Rural Functions Based on Big Data: A Case Study of Dujiangyan Irrigation District in Chengdu," Land, MDPI, vol. 11(3), pages 1-17, March.
    19. Gaoyuan Wang & Yixuan Wang & Yangli Li & Tian Chen, 2023. "Identification of Urban Clusters Based on Multisource Data—An Example of Three Major Urban Agglomerations in China," Land, MDPI, vol. 12(5), pages 1-25, May.
    20. Duan, Kun & Ren, Xiaohang & Shi, Yukun & Mishra, Tapas & Yan, Cheng, 2021. "The marginal impacts of energy prices on carbon price variations: Evidence from a quantile-on-quantile approach," Energy Economics, Elsevier, vol. 95(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2125-:d:221384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.