IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v38y2014icp368-382.html
   My bibliography  Save this article

Biodiesel production using chemical and biological methods – A review of process, catalyst, acyl acceptor, source and process variables

Author

Listed:
  • Bharathiraja, B.
  • Chakravarthy, M.
  • Kumar, R. Ranjith
  • Yuvaraj, D.
  • Jayamuthunagai, J.
  • Kumar, R. Praveen
  • Palani, S.

Abstract

The indiscriminate extraction and consumption of fossil fuels have left the world with a corner kick into the area of exponential fuel demand and now the race is on for alternate energy source. The fortunate improvements in Biodiesel fuel production techniques has been the heading topic of economic and environment sustainability so far. Biodiesel have the potential to replace diesel in vehicle engines. It has been tested and proved that engines running on biodiesel have shown low smoke emission and low toxic gas emission. Biodiesel properties such as oxidation stability, cloud point, iodine value, linoleic acid and poly-unsaturated fatty acid methyl ester content of biodiesel are dependent upon the quality of the feedstock. Processing parameters such as density, viscosity, acid value, distillation property are dependent on feedstock as well as the reaction conditions or the extent of reaction. Combustion property greatly varies with the substrates used and almost all the varieties have been proven to be as superior as that of conventional diesel fuel. Though the existing fossil and terrestrial biomass based oil cannot realistically satisfy the existing demands, algal oil source scores the most out of demanded factors like oil content, extractability, comfortable cultivation and efficient biomass production. Algae are a diverse group of plant like microorganisms, prokaryotic and eukaryotic, mostly autotrophic in nature with basic requirement such as CO2 and light for their normal growth and metabolic activity. Being micro scaled in physiology, most species of algae have less doubling time and the oil productivity greatly exceeds the outcome of best oil producing crops which clearly portrays that microalgae acts as a renewable source and can yield enough amount of oil for biodiesel production to meet the present intensifying demands. This article aims at reviewing the technical aspects of various biodiesel production methods from diverse oil feedstocks, their importance and significance of microalgal, process availability, commercialization potential of various processes.

Suggested Citation

  • Bharathiraja, B. & Chakravarthy, M. & Kumar, R. Ranjith & Yuvaraj, D. & Jayamuthunagai, J. & Kumar, R. Praveen & Palani, S., 2014. "Biodiesel production using chemical and biological methods – A review of process, catalyst, acyl acceptor, source and process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 368-382.
  • Handle: RePEc:eee:rensus:v:38:y:2014:i:c:p:368-382
    DOI: 10.1016/j.rser.2014.05.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114004183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.05.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marchetti, J.M. & Miguel, V.U. & Errazu, A.F., 2007. "Possible methods for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1300-1311, August.
    2. Barnwal, B.K. & Sharma, M.P., 2005. "Prospects of biodiesel production from vegetable oils in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(4), pages 363-378, August.
    3. Singh, Jasvinder & Gu, Sai, 2010. "Commercialization potential of microalgae for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2596-2610, December.
    4. Adriano Sofo (ed.), 2011. "Biodiversity," Books, IntechOpen, number 1277, January-J.
    5. Shahid, Ejaz M. & Jamal, Younis, 2008. "A review of biodiesel as vehicular fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2484-2494, December.
    6. Janaun, Jidon & Ellis, Naoko, 2010. "Perspectives on biodiesel as a sustainable fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1312-1320, May.
    7. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    8. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    9. Koh, May Ying & Mohd. Ghazi, Tinia Idaty, 2011. "A review of biodiesel production from Jatropha curcas L. oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2240-2251, June.
    10. Huang, GuanHua & Chen, Feng & Wei, Dong & Zhang, XueWu & Chen, Gu, 2010. "Biodiesel production by microalgal biotechnology," Applied Energy, Elsevier, vol. 87(1), pages 38-46, January.
    11. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    2. Padula, Miquele L. & Romero, Arthur S. & Hotza, Dachamir & Innocentini, Murilo D.M. & Pinto, Maria E.G. & Pedrini, Augusto S. & Rebelatto, Evertan & Ribeiro, Luiz Fernando B. & Zin, Guilherme & Olivei, 2022. "Dehydration of fatty acid methyl ester mixtures from enzymatic biodiesel using a modified PVDF membrane," Renewable Energy, Elsevier, vol. 187(C), pages 237-247.
    3. Chia, Shir Reen & Ong, Hwai Chyuan & Chew, Kit Wayne & Show, Pau Loke & Phang, Siew-Moi & Ling, Tau Chuan & Nagarajan, Dillirani & Lee, Duu-Jong & Chang, Jo-Shu, 2018. "Sustainable approaches for algae utilisation in bioenergy production," Renewable Energy, Elsevier, vol. 129(PB), pages 838-852.
    4. Roy, Murari Mohon & Calder, Jorge & Wang, Wilson & Mangad, Arvind & Diniz, Fernando Cezar Mariano, 2016. "Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends," Applied Energy, Elsevier, vol. 180(C), pages 52-65.
    5. Giwa, Adewale & Adeyemi, Idowu & Dindi, Abdallah & Lopez, Celia García-Baños & Lopresto, Catia Giovanna & Curcio, Stefano & Chakraborty, Sudip, 2018. "Techno-economic assessment of the sustainability of an integrated biorefinery from microalgae and Jatropha: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 239-257.
    6. Sajid, Zaman & Khan, Faisal & Zhang, Yan, 2016. "Process simulation and life cycle analysis of biodiesel production," Renewable Energy, Elsevier, vol. 85(C), pages 945-952.
    7. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    8. Bharathiraja, B. & Iyyappan, J. & Gopinath, M. & Jayamuthunagai, J. & PraveenKumar, R., 2022. "Transgenicism in algae: Challenges in compatibility, global scenario and future prospects for next generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. Preeti Pal & Kit Wayne Chew & Hong-Wei Yen & Jun Wei Lim & Man Kee Lam & Pau Loke Show, 2019. "Cultivation of Oily Microalgae for the Production of Third-Generation Biofuels," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    10. Yan, Kai & Jarvis, Cody & Gu, Jing & Yan, Yong, 2015. "Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 986-997.
    11. Shimada, Guilherme B. & Cestari, Alexandre, 2020. "Synthesis of heterogeneous catalysts by the hydrolytic Sol-Gel method for the biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 389-394.
    12. Al-Saadi, Ali & Mathan, Bobby & He, Yinghe, 2020. "Esterification and transesterification over SrO–ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 158(C), pages 388-399.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    2. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    3. Rincón, L.E. & Jaramillo, J.J. & Cardona, C.A., 2014. "Comparison of feedstocks and technologies for biodiesel production: An environmental and techno-economic evaluation," Renewable Energy, Elsevier, vol. 69(C), pages 479-487.
    4. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    5. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    6. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    7. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    8. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    9. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    10. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    11. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    12. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    13. Baskar, G. & Aiswarya, R., 2016. "Trends in catalytic production of biodiesel from various feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 496-504.
    14. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    15. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    16. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    17. Yang, Liuqing & Takase, Mohammed & Zhang, Min & Zhao, Ting & Wu, Xiangyang, 2014. "Potential non-edible oil feedstock for biodiesel production in Africa: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 461-477.
    18. Chakrabarti, Mohammed Harun & Ali, Mehmood & Usmani, Jafar Nazir & Khan, Nasim Ahmed & Hasan, Diya'uddeen Basheer & Islam, Md. Sakinul & Abdul Raman, Abdul Aziz & Yusoff, Rozita & Irfan, Muhammad Fais, 2012. "Status of biodiesel research and development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4396-4405.
    19. André Cremonez, Paulo & Feroldi, Michael & Cézar Nadaleti, Willian & de Rossi, Eduardo & Feiden, Armin & de Camargo, Mariele Pasuch & Cremonez, Filipe Eliazar & Klajn, Felipe Fernandes, 2015. "Biodiesel production in Brazil: Current scenario and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 415-428.
    20. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:38:y:2014:i:c:p:368-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.