IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i6p1750-d216475.html
   My bibliography  Save this article

Evaluating the Efficacy of Zero-Emission Vehicle Deployment Strategies: The Maryland Case

Author

Listed:
  • Zhenbao Wang

    (School of Architecture and Art, Hebei University of Engineering, Handan 056038, China)

  • Sevgi Erdogan

    (National Center for Smart Growth Research and Education, University of Maryland, College Park, MD 20742, USA)

  • Frederick W. Ducca

    (National Center for Smart Growth Research and Education, University of Maryland, College Park, MD 20742, USA)

Abstract

This study aimed to develop a model to estimate the impacts of zero-emission vehicle (ZEV) adoption on CO 2 emissions and to evaluate efficacy of ZEV deployment strategies in achieving greenhouse gas (GHG) emission reduction goals. We proposed a modeling scheme to represent ZEVs in four-step trip-based travel demand models. We then tested six ZEV scenarios that were a cross-combination of three ZEV ownership levels and two ZEV operating cost levels. The proposed modeling scheme and scenarios were implemented on the Maryland Statewide Transportation Model (MSTM) to analyze the impacts of different ZEV ownership and cost combinations on travel patterns and on CO 2 emissions. The main findings were the following: (1) A high-ZEV ownership scenario (43.14% of households with ZEVs) could achieve about a 16% reduction in statewide carbon dioxide equivalent (CO 2 Eq) emissions from 2015 base year levels; and (2) CO 2 Eq emissions at a future year baseline (2030) (the Constrained Long-Range Plan) level dropped by approximately 11% in low-ZEV ownership scenarios, 17% in medium-ZEV ownership scenarios, and 32% in high-ZEV ownership scenarios. The high-ZEV ownership results also indicated a more balanced distribution of emissions per unit area or per vehicle mile traveled among different counties.

Suggested Citation

  • Zhenbao Wang & Sevgi Erdogan & Frederick W. Ducca, 2019. "Evaluating the Efficacy of Zero-Emission Vehicle Deployment Strategies: The Maryland Case," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1750-:d:216475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/6/1750/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/6/1750/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schipper, Lee, 2011. "Automobile use, fuel economy and CO2 emissions in industrialized countries: Encouraging trends through 2008?," Transport Policy, Elsevier, vol. 18(2), pages 358-372, March.
    2. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    3. André Luiz Lopes Toledo & Emílio Lèbre La Rovere, 2018. "Urban Mobility and Greenhouse Gas Emissions: Status, Public Policies, and Scenarios in a Developing Economy City, Natal, Brazil," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    4. Inge Vierth & Samuel Lindgren & Hanna Lindgren, 2018. "Vehicle Weight, Modal Split, and Emissions—An Ex-Post Analysis for Sweden," Sustainability, MDPI, vol. 10(6), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phil Goodwin & Kurt Van Dender, 2013. "'Peak Car' - Themes and Issues," Transport Reviews, Taylor & Francis Journals, vol. 33(3), pages 243-254, May.
    2. Bénédicte Meurisse, 2015. "On the relevance of differentiated car purchase taxes in light of the rebound effect," Working Papers 1512, Chaire Economie du climat.
    3. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    4. Li, Yu & Zheng, Ji & Li, Zehong & Yuan, Liang & Yang, Yang & Li, Fujia, 2017. "Re-estimating CO2 emission factors for gasoline passenger cars adding driving behaviour characteristics——A case study of Beijing," Energy Policy, Elsevier, vol. 102(C), pages 353-361.
    5. Wojciech SZYMALSKI, 2021. "Energy And Co 2 Emission Intensities Of Various Modes Of Passenger Transport In Warsaw," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(2), pages 131-140, June.
    6. Andrzej Ziółkowski & Paweł Fuć & Piotr Lijewski & Aleks Jagielski & Maciej Bednarek & Władysław Kusiak, 2022. "Analysis of Exhaust Emissions from Heavy-Duty Vehicles on Different Applications," Energies, MDPI, vol. 15(21), pages 1-21, October.
    7. Hensher, David A. & Wei, Edward, 2024. "Energy and environmental costs in transitioning to zero and low emission trucks for the Australian truck Fleet: An industry perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 185(C).
    8. Silvia Stuchi & Sonia Paulino & Faïz Gallouj, 2022. "Social Innovation in Active Mobility Public Services in the Megacity of Sao Paulo," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    9. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2014. "The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system," Energy, Elsevier, vol. 71(C), pages 556-568.
    10. Bussière, Yves D. & Madre, Jean-Loup & Tapia-Villarreal, Irving, 2019. "Will peak car observed in the North occur in the South? A demographic approach with case studies of Montreal, Lille, Juarez and Puebla," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 39-54.
    11. Rosal, Ignacio del, 2022. "European dieselization: Policy insights from EU car trade," Transport Policy, Elsevier, vol. 115(C), pages 181-194.
    12. Aderiana Mutheu Mbandi & Jan R. Böhnke & Dietrich Schwela & Harry Vallack & Mike R. Ashmore & Lisa Emberson, 2019. "Estimating On-Road Vehicle Fuel Economy in Africa: A Case Study Based on an Urban Transport Survey in Nairobi, Kenya," Energies, MDPI, vol. 12(6), pages 1-28, March.
    13. Andrzej Ziółkowski & Paweł Fuć & Aleks Jagielski & Maciej Bednarek, 2022. "Analysis of Emissions and Fuel Consumption in Freight Transport," Energies, MDPI, vol. 15(13), pages 1-14, June.
    14. Marrero, Ángel S. & Marrero, Gustavo A. & González, Rosa Marina & Rodríguez-López, Jesús, 2021. "Convergence in road transport CO2 emissions in Europe," Energy Economics, Elsevier, vol. 99(C).
    15. Streimikiene, Dalia & Baležentis, Tomas & Baležentienė, Ligita, 2013. "Comparative assessment of road transport technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 611-618.
    16. Bénédicte Meurisse & Maxime Le Roy, 2014. "Towards a clean vehicle fleet: from households’ valuation of fuel efficiency to policy implications," Working Papers 1406, Chaire Economie du climat.
    17. G. Marletto, 2013. "Car and the city: Socio-technical pathways to 2030," Working Paper CRENoS 201306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    18. Munjed A. Maraqa & Francisco D. B. Albuquerque & Mohammed H. Alzard & Rezaul Chowdhury & Lina A. Kamareddine & Jamal El Zarif, 2021. "GHG Emission Reduction Opportunities for Road Projects in the Emirate of Abu Dhabi: A Scenario Approach," Sustainability, MDPI, vol. 13(13), pages 1-22, July.
    19. Hyungwoo Lim & Jaehyeok Kim & Ha-Hyun Jo, 2020. "Population Age Structure and Greenhouse Gas Emissions from Road Transportation: A Panel Cointegration Analysis of 21 OECD Countries," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    20. González, Rosa Marina & Marrero, Gustavo A., 2012. "The effect of dieselization in passenger cars emissions for Spanish regions: 1998–2006," Energy Policy, Elsevier, vol. 51(C), pages 213-222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1750-:d:216475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.