IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6790-d292438.html
   My bibliography  Save this article

Biogas Production from Vegetable and Fruit Markets Waste—Compositional and Batch Characterizations

Author

Listed:
  • Carlos Morales-Polo

    (ICAI School of Engineering, Comillas Pontifical University, Alberto Aguilera 25, 28015 Madrid, Spain)

  • María del Mar Cledera-Castro

    (ICAI School of Engineering, Comillas Pontifical University, Alberto Aguilera 25, 28015 Madrid, Spain)

  • B. Yolanda Moratilla Soria

    (ICAI School of Engineering, Comillas Pontifical University, Alberto Aguilera 25, 28015 Madrid, Spain)

Abstract

This study presents a complete characterization of the residual materials found in fruit and vegetable markets and their adaptability to be treated by anaerobic digestion with the aim of generating biogas as a new and renewable energy source. It has been determined that these substrates are perfectly suitable to be treated by anaerobic digestion, being rich in simple carbohydrates, with a high content of moisture and solids (total and volatile), which makes it a substrate of easy solubilization and with a great amount of matter directly accessible to the microorganisms responsible for anaerobic degradation. The process develops smoothly, with a slight release of acidic elements, but without impact by the development of the buffer effect by ammonia. In addition, a phenomenon of digestion is observed in two phases, indicating that despite the particulateing of the substrate, it manages to digest the organic matter directly accessible and the inaccessible. In numerical terms, 100 g of residue V produce 913.282 NmL of biogas, of which 289.333 NmL correspond to methane. The disintegration constant is 0.200 days −1 , with 16,045% of the substrate degraded. As an innovation, the hydrogen generated in the process has been used as an indicator of the stability and development of the process. Accompanied by a statistical analysis and mathematical adjustments, it is possible to characterize in depth the process and its evolution, determining that the degradation is fast, with a rapid and stable hydrolysis.

Suggested Citation

  • Carlos Morales-Polo & María del Mar Cledera-Castro & B. Yolanda Moratilla Soria, 2019. "Biogas Production from Vegetable and Fruit Markets Waste—Compositional and Batch Characterizations," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6790-:d:292438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6790/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6790/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Buzby, Jean C. & Hyman, Jeffrey, 2012. "Total and per capita value of food loss in the United States," Food Policy, Elsevier, vol. 37(5), pages 561-570.
    2. Zhang, Cunsheng & Su, Haijia & Baeyens, Jan & Tan, Tianwei, 2014. "Reviewing the anaerobic digestion of food waste for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 383-392.
    3. Alessandro Chiumenti & Andrea Pezzuolo & Davide Boscaro & Francesco da Borso, 2019. "Exploitation of Mowed Grass from Green Areas by Means of Anaerobic Digestion: Effects of Grass Conservation Methods (Drying and Ensiling) on Biogas and Biomethane Yield," Energies, MDPI, vol. 12(17), pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernandes, Daniel J. & Ferreira, Ana F. & Fernandes, Edgar C., 2023. "Biogas and biomethane production potential via anaerobic digestion of manure: A case study of Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Cenwei Liu & Yi Lin & Jing Ye & Gordon W. Price & Yixiang Wang, 2023. "Effect of Bamboo Vinegar on Control of Nitrogen Loss in Vegetable Waste and Manure Composting," Agriculture, MDPI, vol. 13(7), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    3. Johnson, Lisa K. & Dunning, Rebecca D. & Gunter, Chris C. & Dara Bloom, J. & Boyette, Michael D. & Creamer, Nancy G., 2018. "Field measurement in vegetable crops indicates need for reevaluation of on-farm food loss estimates in North America," Agricultural Systems, Elsevier, vol. 167(C), pages 136-142.
    4. Bachewe Fantu & Minten Bart & Seyoum Taffesse Alemayehu & Pauw Karl & Cameron Alethia & Genye Endaylalu Tirsit, 2020. "Farmers’ Grain Storage and Losses in Ethiopia," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 18(1), pages 1-19, January.
    5. Abhinav Choudhury & Stephanie Lansing, 2019. "Methane and Hydrogen Sulfide Production from Co-Digestion of Gummy Waste with a Food Waste, Grease Waste, and Dairy Manure Mixture," Energies, MDPI, vol. 12(23), pages 1-12, November.
    6. Zhang, Jingxin & Li, Wangliang & Lee, Jonathan & Loh, Kai-Chee & Dai, Yanjun & Tong, Yen Wah, 2017. "Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment," Energy, Elsevier, vol. 137(C), pages 479-486.
    7. Senghor, A. & Dioh, R.M.N. & Müller, C. & Youm, I., 2017. "Cereal crops for biogas production: A review of possible impact of elevated CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 548-554.
    8. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    9. Aschemann-Witzel, Jessica & de Hooge, Ilona E. & Almli, Valérie L., 2021. "My style, my food, my waste! Consumer food waste-related lifestyle segments," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
    10. Pérez-Rodríguez, N. & García-Bernet, D. & Domínguez, J.M., 2017. "Extrusion and enzymatic hydrolysis as pretreatments on corn cob for biogas production," Renewable Energy, Elsevier, vol. 107(C), pages 597-603.
    11. Roberto Ruggieri & Giuliana Vinci & Marco Ruggeri & Henry Sardaryan, 2020. "Food losses and food waste: The Industry 4.0 opportunity for the sustainability challenge," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(1), pages 159-177.
    12. Richter, Beate & Bokelmann, Wolfgang, 2015. "Case Study about Food Losses in German Household," 143rd Joint EAAE/AAEA Seminar, March 25-27, 2015, Naples, Italy 202715, European Association of Agricultural Economists.
    13. Zhang, Yu & Qi, Danyi, 2020. "How Households Waste Food at Home: Estimating Household Food Waste in a Dynamic Decision Model under Uncertainty," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304631, Agricultural and Applied Economics Association.
    14. Anriquez, Gustavo & Foster, William & Ortega, Jorge & Santos Rocha, Jozimo, 2021. "In search of economically significant food losses: Evidence from Tunisia and Egypt," Food Policy, Elsevier, vol. 98(C).
    15. Thyberg, Krista L. & Tonjes, David J., 2016. "Drivers of food waste and their implications for sustainable policy development," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 110-123.
    16. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    17. Ghosh, R.K. & Eriksson, M. & Istamov, A., 2018. "Food waste due to coercive power in agri-food chains: Evidence from Sweden," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277496, International Association of Agricultural Economists.
    18. Díaz-Ruiz, Raquel & Costa-Font, Montserrat & López-i-Gelats, Feliu & Gil, José, 2015. "Defining scenarios to food waste reduction: seeking for consensus among food supply stakeholders," 148th Seminar, November 30-December 1, 2015, The Hague, The Netherlands 229266, European Association of Agricultural Economists.
    19. Aisha Hassan & Li Cui-Xia & Naveed Ahmad & Muzaffar Iqbal & Kramat Hussain & Muhammad Ishtiaq & Maira Abrar, 2021. "Safety Failure Factors Affecting Dairy Supply Chain: Insights from a Developing Economy," Sustainability, MDPI, vol. 13(17), pages 1-24, August.
    20. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun, 2019. "Life-cycle assessment of biohythane production via two-stage anaerobic fermentation from microalgae and food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 395-410.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6790-:d:292438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.