IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i1p281-d195682.html
   My bibliography  Save this article

Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review

Author

Listed:
  • Carolina Girometta

    (Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy)

  • Anna Maria Picco

    (Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy)

  • Rebecca Michela Baiguera

    (Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy)

  • Daniele Dondi

    (Department of Chemistry, University of Pavia, Viale Taramelli 10, 27100 Pavia, Italy)

  • Stefano Babbini

    (MOGU S.r.l., Via S. Francesco, 61, 21020 Inarzo, VA, Italy)

  • Marco Cartabia

    (Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy
    MOGU S.r.l., Via S. Francesco, 61, 21020 Inarzo, VA, Italy)

  • Mirko Pellegrini

    (MOGU S.r.l., Via S. Francesco, 61, 21020 Inarzo, VA, Italy)

  • Elena Savino

    (Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy)

Abstract

Reducing the use of non-renewable resources is a key strategy of a circular economy. Mycelium-based foams and sandwich composites are an emerging category of biocomposites relying on the valorization of lignocellulosic wastes and the natural growth of the living fungal organism. While growing, the fungus cements the substrate, which is partially replaced by the tenacious biomass of the fungus itself. The final product can be shaped to produce insulating panels, packaging materials, bricks or new-design objects. Only a few pioneer companies in the world retain a significant know-how, as well as the ability to provide the material characterization. Moreover, several technical details are not revealed due to industrial secrecy. According to the available literature, mycelium-based biocomposites show low density and good insulation properties, both related to acoustic and thermal aspects. Mechanical properties are apparently inferior in comparison to expanded polystyrene (EPS), which is the major synthetic competitor. Nevertheless, mycelium-based composites can display an enormous variability on the basis of: fungal species and strain; substrate composition and structure; and incubation conditions. The aim of the present review is to summarize technical aspects and properties of mycelium-based biocomposites focusing on both actual applications and future perspectives.

Suggested Citation

  • Carolina Girometta & Anna Maria Picco & Rebecca Michela Baiguera & Daniele Dondi & Stefano Babbini & Marco Cartabia & Mirko Pellegrini & Elena Savino, 2019. "Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review," Sustainability, MDPI, vol. 11(1), pages 1-22, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:1:p:281-:d:195682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/1/281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/1/281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramesh, M. & Palanikumar, K. & Reddy, K. Hemachandra, 2017. "Plant fibre based bio-composites: Sustainable and renewable green materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 558-584.
    2. Schiavoni, S. & D׳Alessandro, F. & Bianchi, F. & Asdrubali, F., 2016. "Insulation materials for the building sector: A review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 988-1011.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shouq Al-Qahtani & Muammer Koç & Rima J. Isaifan, 2023. "Mycelium-Based Thermal Insulation for Domestic Cooling Footprint Reduction: A Review," Sustainability, MDPI, vol. 15(17), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benedetti Miriam & Herce Carlos & Sforzini Matteo & Susca Tiziana & Toro Claudia, 2024. "Defining a sustainable supply chain for buildings Off-Site envelope thermal insulation solutions: proposal of a methodology to investigate opportunities based on a context analysis," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 15(s1), pages 38-57.
    2. Jiang, Wei & Jin, Yang & Liu, Gongliang & Li, Qing & Li, Dong, 2023. "Passive nearly zero energy retrofits of rammed earth rural residential buildings based on energy efficiency and cost-effectiveness analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    3. Lihong Chen & Kexin Qie & Hafeezullah Memon & Hanur Meku Yesuf, 2021. "The Empirical Analysis of Green Innovation for Fashion Brands, Perceived Value and Green Purchase Intention—Mediating and Moderating Effects," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    4. Stefano Cascone & Gianpiero Evola & Antonio Gagliano & Gaetano Sciuto & Chiara Baroetto Parisi, 2019. "Laboratory and In-Situ Measurements for Thermal and Acoustic Performance of Straw Bales," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    5. Artur Koper & Karol Prałat & Justyna Ciemnicka & Katarzyna Buczkowska, 2020. "Influence of the Calcination Temperature of Synthetic Gypsum on the Particle Size Distribution and Setting Time of Modified Building Materials," Energies, MDPI, vol. 13(21), pages 1-23, November.
    6. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Alejandro Padilla-Rivera & Ben Amor & Pierre Blanchet, 2018. "Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    8. Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).
    9. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
    10. Claudia Fabiani & Anna Laura Pisello & Marco Barbanera & Luisa F. Cabeza & Franco Cotana, 2019. "Assessing the Potentiality of Animal Fat Based-Bio Phase Change Materials (PCM) for Building Applications: An Innovative Multipurpose Thermal Investigation," Energies, MDPI, vol. 12(6), pages 1-18, March.
    11. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    12. Božiček, D. & Peterková, J. & Zach, J. & Košir, M., 2024. "Vacuum insulation panels: An overview of research literature with an emphasis on environmental and economic studies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Taesub Lim & Jaewang Seok & Daeung Danny Kim, 2017. "A Comparative Study of Energy Performance of Fumed Silica Vacuum Insulation Panels in an Apartment Building," Energies, MDPI, vol. 10(12), pages 1-12, December.
    14. De Masi, Rosa Francesca & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2020. "Multi-layered wall with vacuum insulation panels: Results of 5-years in-field monitoring and numerical analysis of aging effect on building consumptions," Applied Energy, Elsevier, vol. 278(C).
    15. Ho Baik & Minju Kim & Sang-Heon Lee & Hunhee Cho, 2018. "Simulation Model for Productivity Analysis of External Insulated Precast Concrete Wall System," Sustainability, MDPI, vol. 10(1), pages 1-20, January.
    16. Gonçalves, Márcio & Simões, Nuno & Serra, Catarina & Flores-Colen, Inês, 2020. "A review of the challenges posed by the use of vacuum panels in external insulation finishing systems," Applied Energy, Elsevier, vol. 257(C).
    17. Rafael Alvarez Gutiérrez & Johan Blom & Bert Belmans & Anouk De Bock & Lars Van den Bergh & Amaryllis Audenaert, 2023. "Preliminary Research on Moss-Based Biocomposites as an Alternative Substrate in Moss Walls," Sustainability, MDPI, vol. 15(23), pages 1-18, December.
    18. Guo, Haijin & Cai, Shanshan & Li, Kun & Liu, Zhongming & Xia, Lizhi & Xiong, Jiazhuang, 2020. "Simultaneous test and visual identification of heat and moisture transport in several types of thermal insulation," Energy, Elsevier, vol. 197(C).
    19. Maatouk Khoukhi & Abeer Dar Saleh & Ahmed Hassan & Shaimaa Abdelbaqi, 2021. "Thermal Characterization of a New Bio-Based Insulation Material Containing Puffed Rice," Energies, MDPI, vol. 14(18), pages 1-12, September.
    20. Matteo Vitale & María del Mar Barbero-Barrera & Santi Maria Cascone, 2021. "Thermal, Physical and Mechanical Performance of Orange Peel Boards: A New Recycled Material for Building Application," Sustainability, MDPI, vol. 13(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:1:p:281-:d:195682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.