IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5369-d271691.html
   My bibliography  Save this article

Assessment of Wheat Straw Cover and Yield Performance in a Rice-Wheat Cropping System by Using Landsat Satellite Data

Author

Listed:
  • Muhammad Sohail Memon

    (College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
    Faculty of Agricultural Engineering, Sindh Agriculture University, Tandojam 70060, Pakistan)

  • Zhou Jun

    (College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)

  • Chuanliang Sun

    (Institute of Agricultural Information, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
    Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E3, Canada)

  • Chunxia Jiang

    (College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
    College of Mechanical Engineering, Anhui Science and Technology University, Chuzhou City 233100, Anhui, China
    Department of Biological and Agricultural Engineering, University of California Davis, Davis, CA 95616, USA)

  • Weiyue Xu

    (College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
    Department of Biological and Agricultural Engineering, College of Engineering, Texas A&M University, Texas, TX 77843-1255, USA)

  • Qiong Hu

    (Key Laboratory for Geographical Process Analysis & Simulation Hubei Province/School of Urban and Environment Sciences, Central China Normal University, Wuhan 430079, China)

  • Hangxu Yang

    (College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
    College of Mechanical and Electrical Engineering, Jinhua Polytechnic, Jinhua 321017, China)

  • Changying Ji

    (College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)

Abstract

Proper straw cover information is one of the most important inputs for agroecosystem and environmental modeling, but the availability of accurate information remains limited. However, several remote-sensing (RS)-based studies have provided a residue cover estimation and provided spatial distribution mapping of paddy rice areas in a constant field condition. Despite this, the performance of rice crops with straw applications has received little attention. Furthermore, there are no methods currently available to quantify the wheat straw cover (WSC) percentage and its effect on rice crops in the rice-wheat cropping region on a large scale and a continuous basis. The novel approach proposed in this study demonstrates that the Landsat satellite data and seven RS-based indices, e.g., (i) normalized difference vegetation index (NDVI), (ii) Normalized difference senescent vegetation index (NDSVI), (iii) Normalized difference index 5 (NDI5), (iv) Normalized difference index 7 (NDI7), (v) Simple tillage index (STI), (vi) Normalized difference tillage index (NDTI), and (vii) Shortwave red normalized difference index (SRNDI), can be used to estimate the WSC percentage and determine the performance of rice crops over the study area in Changshu county, China. The regression model shows that the NDTI index performed better in differentiating the WSC at sampling points with a coefficient of determination ( R 2 = 0.80) and root mean squared difference (RMSD = 8.46%) compared to that of other indices, whereas the overall accuracy for mapping WSC was observed to be 84.61% and the kappa coefficient was κ = 0.76. Moreover, the rice yield model was established by correlating between the peak NDVI values and rice grain yield collected from ground census data, with R 2 = 0.85. The finding also revealed that the highest estimated yield (8439.67 kg/ha) was recorded with 68% WCS in the study region. This study confirmed that the NDVI and NDTI algorithms are very effective and robust indicators. Also, it can be strongly concluded that multispectral Landsat satellite imagery is capable of measuring the WSC percentage and successively determines the impact of different WSC percentages on rice crop yield within fields or across large regions through remote sensing (RS) and geographical information system (GIS) techniques for the long-term planning of agriculture sustainability in rice-wheat cropping systems.

Suggested Citation

  • Muhammad Sohail Memon & Zhou Jun & Chuanliang Sun & Chunxia Jiang & Weiyue Xu & Qiong Hu & Hangxu Yang & Changying Ji, 2019. "Assessment of Wheat Straw Cover and Yield Performance in a Rice-Wheat Cropping System by Using Landsat Satellite Data," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5369-:d:271691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5369/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5369/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. L. Baumhardt & B. A. Stewart & U. M. Sainju, 2015. "North American Soil Degradation: Processes, Practices, and Mitigating Strategies," Sustainability, MDPI, vol. 7(3), pages 1-25, March.
    2. Muhammad Sohail Memon & Jun Guo & Ahmed Ali Tagar & Nazia Perveen & Changying Ji & Shamim Ara Memon & Noreena Memon, 2018. "The Effects of Tillage and Straw Incorporation on Soil Organic Carbon Status, Rice Crop Productivity, and Sustainability in the Rice-Wheat Cropping System of Eastern China," Sustainability, MDPI, vol. 10(4), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minghao Qu & Gang Wang & Zihao Zhou & Xiaomei Gao & Hailan Li & Hewen Tan & Meiqi Xiang & Honglei Jia, 2023. "Development and Performance Evaluation of a Pressure-Adjustable Waterjet Stubble-Cutting Device with Thickness Detection for No-Till Sowing," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    2. Mwehe Mathenge & Ben G. J. S. Sonneveld & Jacqueline E. W. Broerse, 2022. "Application of GIS in Agriculture in Promoting Evidence-Informed Decision Making for Improving Agriculture Sustainability: A Systematic Review," Sustainability, MDPI, vol. 14(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    2. Gang Zhang & Dejian Wang & Yuanchun Yu, 2020. "Investigation into the Effects of Straw Retention and Nitrogen Reduction on CH 4 and N 2 O Emissions from Paddy Fields in the Lower Yangtze River Region, China," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    3. A. S. Panwar & M. Shamim & Subhash Babu & N. Ravishankar & Ashisa Kumar Prusty & N. M. Alam & D. K. Singh & J. S. Bindhu & Jashanjot Kaur & L. N. Dashora & M. D. Latheef Pasha & Soumitra Chaterjee & M, 2018. "Enhancement in Productivity, Nutrients Use Efficiency, and Economics of Rice-Wheat Cropping Systems in India through Farmer’s Participatory Approach," Sustainability, MDPI, vol. 11(1), pages 1-26, December.
    4. Song, Jiashen & Zhang, Hongyuan & Chang, Fangdi & Yu, Ru & Wang, Jing & Wang, Xiquan & Li, Yuyi, 2022. "If the combination of straw interlayer and irrigation water reduction maintained sunflower yield by boosting soil fertility and improving bacterial community in arid and saline areas," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Prabhjit Kaur & Kulvir Singh Saini & Sandeep Sharma & Jashanjot Kaur & Rajan Bhatt & Saud Alamri & Alanoud T. Alfagham & Sadam Hussain, 2023. "Increasing the Efficiency of the Rice–Wheat Cropping System through Integrated Nutrient Management," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    6. Asmamaw A. Gebrehiwot & Leila Hashemi-Beni & Lyubov A. Kurkalova & Chyi L. Liang & Manoj K. Jha, 2022. "Using ABM to Study the Potential of Land Use Change for Mitigation of Food Deserts," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    7. Gackstetter, David & von Bloh, Malte & Hannus, Veronika & Meyer, Sebastian T. & Weisser, Wolfgang & Luksch, Claudia & Asseng, Senthold, 2023. "Autonomous field management – An enabler of sustainable future in agriculture," Agricultural Systems, Elsevier, vol. 206(C).
    8. Shengchun Li & Yilin Zhang & Lihao Guo & Xiaofang Li, 2022. "Impact of Tillage and Straw Treatment Methods on Rice Growth and Yields in a Rice–Ratoon Rice Cropping System," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    9. Muhammad Ameen & Wang Xiaochan & Muhammad Yaseen & Muhammad Umair & Khurram Yousaf & Zhenjie Yang & Skakeel Ahmed Soomro, 2018. "Performance Evaluation of Root Zone Heating System Developed with Sustainable Materials for Application in Low Temperatures," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    10. Chunxia Jiang & Zhixiong Lu & Wenbin Dong & Bo Cao & Kyoosik Shin, 2023. "Measurement and Analysis of the Influence Factors of Tractor Tire Contact Area Based on a Multiple Linear Regression Equation," Sustainability, MDPI, vol. 15(13), pages 1-12, June.
    11. Lisa Lobry de Bruyn & Susan Andrews, 2016. "Are Australian and United States Farmers Using Soil Information for Soil Health Management?," Sustainability, MDPI, vol. 8(4), pages 1-33, March.
    12. Douglas L. Karlen & Charles W. Rice, 2015. "Soil Degradation: Will Humankind Ever Learn?," Sustainability, MDPI, vol. 7(9), pages 1-12, September.
    13. Ojo, Olanike & Ojo, Michael A. & Ajani, Yusuf & Oseghale, Agatha & Busari, A.O., 2021. "Effects of Land Degradation on the Productivity of Arable Crop Farmers in Selected Local Government Areas (LGAs) of Ogun State, Nigeria," 2021 Conference, August 17-31, 2021, Virtual 315189, International Association of Agricultural Economists.
    14. Ciro Apollonio & Andrea Petroselli & Flavia Tauro & Manuela Cecconi & Chiara Biscarini & Claudio Zarotti & Salvatore Grimaldi, 2021. "Hillslope Erosion Mitigation: An Experimental Proof of a Nature-Based Solution," Sustainability, MDPI, vol. 13(11), pages 1-14, May.
    15. Naijuan Hu & Qian Chen & Liqun Zhu, 2019. "The Responses of Soil N 2 O Emissions to Residue Returning Systems: A Meta-Analysis," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    16. Ram N. Acharya & Rajan Ghimire & Apar GC & Don Blayney, 2019. "Effect of Cover Crop on Farm Profitability and Risk in the Southern High Plains," Sustainability, MDPI, vol. 11(24), pages 1-13, December.
    17. Michal Apollo & Viacheslav Andreychouk & Suman S. Bhattarai, 2018. "Short-Term Impacts of Livestock Grazing on Vegetation and Track Formation in a High Mountain Environment: A Case Study from the Himalayan Miyar Valley (India)," Sustainability, MDPI, vol. 10(4), pages 1-17, March.
    18. Jan Winkler & Jiří Dvořák & Jiří Hosa & Petra Martínez Barroso & Magdalena Daria Vaverková, 2022. "Impact of Conservation Tillage Technologies on the Biological Relevance of Weeds," Land, MDPI, vol. 12(1), pages 1-11, December.
    19. Eduardo Oliveira & Silvia Tobias & Anna M. Hersperger, 2018. "Can Strategic Spatial Planning Contribute to Land Degradation Reduction in Urban Regions? State of the Art and Future Research," Sustainability, MDPI, vol. 10(4), pages 1-23, March.
    20. Vito Imbrenda & Rosa Coluzzi & Valerio Di Stefano & Gianluca Egidi & Luca Salvati & Caterina Samela & Tiziana Simoniello & Maria Lanfredi, 2022. "Modeling Spatio-Temporal Divergence in Land Vulnerability to Desertification with Local Regressions," Sustainability, MDPI, vol. 14(17), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5369-:d:271691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.