IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i4p961-d138092.html
   My bibliography  Save this article

The Effects of Tillage and Straw Incorporation on Soil Organic Carbon Status, Rice Crop Productivity, and Sustainability in the Rice-Wheat Cropping System of Eastern China

Author

Listed:
  • Muhammad Sohail Memon

    (College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
    Faculty of Agricultural Engineering, Sindh Agriculture University, 70060 Tando Jam, Pakistan)

  • Jun Guo

    (Yancheng Vocational Institute of Industry Technology, Yancheng 224005, China)

  • Ahmed Ali Tagar

    (Faculty of Agricultural Engineering, Sindh Agriculture University, 70060 Tando Jam, Pakistan)

  • Nazia Perveen

    (State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

  • Changying Ji

    (College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)

  • Shamim Ara Memon

    (Faculty of Agricultural Engineering, Sindh Agriculture University, 70060 Tando Jam, Pakistan)

  • Noreena Memon

    (Faculty of Agricultural Engineering, Sindh Agriculture University, 70060 Tando Jam, Pakistan)

Abstract

Soil management practices are used to enhance soil organic carbon, fertility, and crop productivity around the world. However, accurate information about the appropriate amount of straw incorporation is not available, because it is generally believed that at least 30% of the soil surface should be covered by straw, which is not implemented in all field environments. Therefore, a two-year (2016–2017) field experiment was conducted to investigate the impact of different percentages of straw incorporation and tillage methods, i.e., reduced tillage (RT) and conventional tillage (CT), on crop yield, soil organic carbon (SOC), total nitrogen (TN), and soil carbon storage (SCS) in rice–wheat cropping systems, under eight treatments. The experimental results showed that the greatest reduction in soil dry bulk density ( ρ b ) was found under CT with 100% straw coverage (9.79%), whereas the least reduction occurred under CT with no straw (1.31%). The mean TN concentration, soil organic matter (SOM), and soil carbon storage (SCS) were significantly higher by 0.98 g/kg, 17.07%, and 14.20%, respectively, under reduced tillage with 60% straw incorporation (RTsi 60 ) compared with all other treatments. Our findings demonstrate that the incorporated wheat residues resulted in the highest rice production (7.95–8.63 t/ha) under RTsi 60 . We recommend the adoption of reduced tillage with 60% straw incorporation to increase rice yield, improve soil structure, and enhance TN, SOM, and SCS in paddy soil under rice-wheat rotation fields for agricultural sustainability.

Suggested Citation

  • Muhammad Sohail Memon & Jun Guo & Ahmed Ali Tagar & Nazia Perveen & Changying Ji & Shamim Ara Memon & Noreena Memon, 2018. "The Effects of Tillage and Straw Incorporation on Soil Organic Carbon Status, Rice Crop Productivity, and Sustainability in the Rice-Wheat Cropping System of Eastern China," Sustainability, MDPI, vol. 10(4), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:961-:d:138092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/4/961/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/4/961/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ladha, J.K. & Fischer, K.S. & Hossain, M. & Hobbs, P.R. & Hardy, B., 2000. "Improving the.Productivity and Sustainability of Rice-Wheat Systems of the lndo-Gangetic Plains: A Synthesis of NARS-IRRI Partnership Research," IRRI Discussion Papers 287597, International Rice Research Institute (IRRI).
    2. Gulab Singh Yadav & Rahul Datta & Shamina Imran Pathan & Rattan Lal & Ram Swaroop Meena & Subhash Babu & Anup Das & S. N. Bhowmik & Mrinmoy Datta & Poulami Saha & Pawan Kumar Mishra, 2017. "Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice ( Oryza sativa L.)–Rice System in North Eastern Region of India," Sustainability, MDPI, vol. 9(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Ameen & Wang Xiaochan & Muhammad Yaseen & Muhammad Umair & Khurram Yousaf & Zhenjie Yang & Skakeel Ahmed Soomro, 2018. "Performance Evaluation of Root Zone Heating System Developed with Sustainable Materials for Application in Low Temperatures," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    2. Naijuan Hu & Qian Chen & Liqun Zhu, 2019. "The Responses of Soil N 2 O Emissions to Residue Returning Systems: A Meta-Analysis," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    3. Shengchun Li & Yilin Zhang & Lihao Guo & Xiaofang Li, 2022. "Impact of Tillage and Straw Treatment Methods on Rice Growth and Yields in a Rice–Ratoon Rice Cropping System," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    4. Gang Zhang & Dejian Wang & Yuanchun Yu, 2020. "Investigation into the Effects of Straw Retention and Nitrogen Reduction on CH 4 and N 2 O Emissions from Paddy Fields in the Lower Yangtze River Region, China," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    5. Chunxia Jiang & Zhixiong Lu & Wenbin Dong & Bo Cao & Kyoosik Shin, 2023. "Measurement and Analysis of the Influence Factors of Tractor Tire Contact Area Based on a Multiple Linear Regression Equation," Sustainability, MDPI, vol. 15(13), pages 1-12, June.
    6. Prabhjit Kaur & Kulvir Singh Saini & Sandeep Sharma & Jashanjot Kaur & Rajan Bhatt & Saud Alamri & Alanoud T. Alfagham & Sadam Hussain, 2023. "Increasing the Efficiency of the Rice–Wheat Cropping System through Integrated Nutrient Management," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    7. Muhammad Sohail Memon & Zhou Jun & Chuanliang Sun & Chunxia Jiang & Weiyue Xu & Qiong Hu & Hangxu Yang & Changying Ji, 2019. "Assessment of Wheat Straw Cover and Yield Performance in a Rice-Wheat Cropping System by Using Landsat Satellite Data," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    8. A. S. Panwar & M. Shamim & Subhash Babu & N. Ravishankar & Ashisa Kumar Prusty & N. M. Alam & D. K. Singh & J. S. Bindhu & Jashanjot Kaur & L. N. Dashora & M. D. Latheef Pasha & Soumitra Chaterjee & M, 2018. "Enhancement in Productivity, Nutrients Use Efficiency, and Economics of Rice-Wheat Cropping Systems in India through Farmer’s Participatory Approach," Sustainability, MDPI, vol. 11(1), pages 1-26, December.
    9. Song, Jiashen & Zhang, Hongyuan & Chang, Fangdi & Yu, Ru & Wang, Jing & Wang, Xiquan & Li, Yuyi, 2022. "If the combination of straw interlayer and irrigation water reduction maintained sunflower yield by boosting soil fertility and improving bacterial community in arid and saline areas," Agricultural Water Management, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. You, Liangzhi & Wood, Stanley, 2006. "An entropy approach to spatial disaggregation of agricultural production," Agricultural Systems, Elsevier, vol. 90(1-3), pages 329-347, October.
    2. Subhan Danish & Muhammad Zafar-ul-Hye & Shah Fahad & Shah Saud & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae , with and without Timber Waste Biochar in Maize," Sustainability, MDPI, vol. 12(15), pages 1-17, August.
    3. Mousumi Ghosh & Waqar Ashiq & Hiteshkumar Bhogilal Vasava & Duminda N. Vidana Gamage & Prasanta K. Patra & Asim Biswas, 2021. "Short-Term Carbon Sequestration and Changes of Soil Organic Carbon Pools in Rice under Integrated Nutrient Management in India," Agriculture, MDPI, vol. 11(4), pages 1-14, April.
    4. V.K. Mishra & S. Srivastava & A.K. Bhardwaj & D.K. Sharma & Y.P. Singh & A.K. Nayak, 2015. "Resource conservation strategies for rice‐wheat cropping systems on partially reclaimed sodic soils of the Indo‐Gangetic region, and their effects on soil carbon," Natural Resources Forum, Blackwell Publishing, vol. 39(2), pages 110-122, May.
    5. Fazli Wahid & Shah Fahad & Subhan Danish & Muhammad Adnan & Zhen Yue & Shah Saud & Manzer H. Siddiqui & Martin Brtnicky & Tereza Hammerschmiedt & Rahul Datta, 2020. "Sustainable Management with Mycorrhizae and Phosphate Solubilizing Bacteria for Enhanced Phosphorus Uptake in Calcareous Soils," Agriculture, MDPI, vol. 10(8), pages 1-14, August.
    6. R. Wassmann & H.U. Neue & J.K. Ladha & M.S. Aulakh, 2004. "Mitigating Greenhouse Gas Emissions from Rice-Wheat Cropping Systems in Asia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 6(1), pages 65-90, March.
    7. Sekar, I. & Pal, Suresh, 2012. "Rice and Wheat Crop Productivity in the Indo-Gangetic Plains of India: Changing Pattern of Growth and Future Strategies," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 67(2), pages 1-15.
    8. Garg, Kaushal K. & Das, Bhabani S. & Safeeq, Mohammad & Bhadoria, Pratap B.S., 2009. "Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport," Agricultural Water Management, Elsevier, vol. 96(12), pages 1705-1714, December.
    9. Raghuveer Singh & Dharam Bir Yadav & N. Ravisankar & Ashok Yadav & Harpreet Singh, 2020. "Crop residue management in rice–wheat cropping system for resource conservation and environmental protection in north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 3871-3896, June.
    10. Gourisankar Pradhan & Ram Swaroop Meena, 2022. "Diversity in the Rice–Wheat System with Genetically Modified Zinc and Iron-Enriched Varieties to Achieve Nutritional Security," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    11. Ram Swaroop Meena & Sandeep Kumar & Rahul Datta & Rattan Lal & Vinod Vijayakumar & Martin Brtnicky & Mahaveer Prasad Sharma & Gulab Singh Yadav & Manoj Kumar Jhariya & Chetan Kumar Jangir & Shamina Im, 2020. "Impact of Agrochemicals on Soil Microbiota and Management: A Review," Land, MDPI, vol. 9(2), pages 1-21, January.
    12. Jiri Holatko & Tereza Hammerschmiedt & Rahul Datta & Tivadar Baltazar & Antonin Kintl & Oldrich Latal & Vaclav Pecina & Petr Sarec & Petr Novak & Ludmila Balakova & Subhan Danish & Muhammad Zafar-ul-H, 2020. "Humic Acid Mitigates the Negative Effects of High Rates of Biochar Application on Microbial Activity," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    13. Vasisht, A.K. & Kumar, S. Sujith & Aggarwal, P.K. & Kalra, N. & Pathak, H. & Joshi, H.C. & Choudhary, R.C., 2007. "An Integrated Evaluation of Trade-Offs between Environmental Risk Factors and Food Production Using Interactive Multiple Goal Linear Programming – A Case Study of Haryana," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 62(3), pages 1-13.
    14. Theodore Danso Marfo & Rahul Datta & Valerie Vranová & Adam Ekielski, 2019. "Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land Transition," Agriculture, MDPI, vol. 9(10), pages 1-10, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:961-:d:138092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.