IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i17p4750-d262599.html
   My bibliography  Save this article

The Potential of Biomethane in Replacing Fossil Fuels in Heavy Transport—A Case Study on Finland

Author

Listed:
  • Anna Pääkkönen

    (Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland
    MAB Powertec Oy, Finlaysoninkatu 7, 33210 Tampere, Finland)

  • Kalle Aro

    (Faculty of Management and Business, Tampere University, Kanslerinrinne 1, 33100 Tampere, Finland)

  • Pami Aalto

    (Faculty of Management and Business, Tampere University, Kanslerinrinne 1, 33100 Tampere, Finland)

  • Jukka Konttinen

    (Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720 Tampere, Finland)

  • Matti Kojo

    (Faculty of Management and Business, Tampere University, Kanslerinrinne 1, 33100 Tampere, Finland)

Abstract

Electrification is a frequently discussed solution for reducing transport related carbon dioxide emissions. However, transport sectors such as aviation and heavy-duty vehicles remain dependent on on-board fuels. Here, biomethane is still a little exploited solution, and the case of heavy-duty vehicles is particularly underappreciated despite the recent technical advances and potentially notable emission reductions. This paper discusses the potential of biomethane in heavy-duty road transport in the case of Finland, where the utilization rate is low compared to the technical potential. To this end, the potential of biomethane production through both anaerobic digestion and gasification was calculated in three scenarios for the heavy-duty transport fleet, based on the literature values of biomethane potential and truck class fuel consumption. The authors find that approximately half of the heavy-duty transport in Finland could be biomethane fueled by 2030. The estimated production costs for biomethane (81–190 €/MWh) would be competitive with the current consumer diesel price (152 €/MWh). Utilizing the total biomethane potential in heavy-duty transport would furthermore decrease the respective carbon dioxide emissions by 50%. To accelerate the transition in the heavy-duty transport sector, a more comprehensive political framework is needed, taking into account both production and consumption.

Suggested Citation

  • Anna Pääkkönen & Kalle Aro & Pami Aalto & Jukka Konttinen & Matti Kojo, 2019. "The Potential of Biomethane in Replacing Fossil Fuels in Heavy Transport—A Case Study on Finland," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4750-:d:262599
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/17/4750/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/17/4750/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jensen, Ida Græsted & Münster, Marie & Pisinger, David, 2017. "Optimizing the supply chain of biomass and biogas for a single plant considering mass and energy losses," European Journal of Operational Research, Elsevier, vol. 262(2), pages 744-758.
    2. Sarah Kilpeläinen & Pami Aalto & Pasi Toivanen & Pinja Lehtonen & Hannele Holttinen, 2019. "How to Achieve a More Resource‐Efficient and Climate‐Neutral Energy System by 2030? Views of Nordic Stakeholders," Review of Policy Research, Policy Studies Organization, vol. 36(4), pages 448-472, July.
    3. Patterson, Tim & Esteves, Sandra & Dinsdale, Richard & Guwy, Alan, 2011. "An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK," Energy Policy, Elsevier, vol. 39(3), pages 1806-1816, March.
    4. Hijazi, O. & Munro, S. & Zerhusen, B. & Effenberger, M., 2016. "Review of life cycle assessment for biogas production in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1291-1300.
    5. Skovsgaard, Lise & Jensen, Ida Græsted, 2018. "Recent trends in biogas value chains explained using cooperative game theory," Energy Economics, Elsevier, vol. 74(C), pages 503-522.
    6. Uusitalo, V. & Havukainen, J. & Soukka, R. & Väisänen, S. & Havukainen, M. & Luoranen, M., 2015. "Systematic approach for recognizing limiting factors for growth of biomethane use in transportation sector – A case study in Finland," Renewable Energy, Elsevier, vol. 80(C), pages 479-488.
    7. Ridjan, Iva & Mathiesen, Brian Vad & Connolly, David & Duić, Neven, 2013. "The feasibility of synthetic fuels in renewable energy systems," Energy, Elsevier, vol. 57(C), pages 76-84.
    8. Andrea G. Capodaglio & Arianna Callegari & Maria Virginia Lopez, 2016. "European Framework for the Diffusion of Biogas Uses: Emerging Technologies, Acceptance, Incentive Strategies, and Institutional-Regulatory Support," Sustainability, MDPI, vol. 8(4), pages 1-18, March.
    9. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    10. Kapdi, S.S. & Vijay, V.K. & Rajesh, S.K. & Prasad, Rajendra, 2005. "Biogas scrubbing, compression and storage: perspective and prospectus in Indian context," Renewable Energy, Elsevier, vol. 30(8), pages 1195-1202.
    11. Connolly, D. & Mathiesen, B.V. & Ridjan, I., 2014. "A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system," Energy, Elsevier, vol. 73(C), pages 110-125.
    12. Thiruvengadam, Arvind & Besch, Marc & Padmanaban, Vishnu & Pradhan, Saroj & Demirgok, Berk, 2018. "Natural gas vehicles in heavy-duty transportation-A review," Energy Policy, Elsevier, vol. 122(C), pages 253-259.
    13. Alamia, Alberto & Magnusson, Ingemar & Johnsson, Filip & Thunman, Henrik, 2016. "Well-to-wheel analysis of bio-methane via gasification, in heavy duty engines within the transport sector of the European Union," Applied Energy, Elsevier, vol. 170(C), pages 445-454.
    14. Khan, Muhammad Imran & Yasmin, Tabassum & Shakoor, Abdul, 2015. "Technical overview of compressed natural gas (CNG) as a transportation fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 785-797.
    15. Eker, Sibel & van Daalen, Els, 2015. "A model-based analysis of biomethane production in the Netherlands and the effectiveness of the subsidization policy under uncertainty," Energy Policy, Elsevier, vol. 82(C), pages 178-196.
    16. Liimatainen, Heikki & Stenholm, Pekka & Tapio, Petri & McKinnon, Alan, 2012. "Energy efficiency practices among road freight hauliers," Energy Policy, Elsevier, vol. 50(C), pages 833-842.
    17. Kathrin Bienert & Britt Schumacher & Martín Rojas Arboleda & Eric Billig & Samiksha Shakya & Gustav Rogstrand & Marcin Zieliński & Marcin Dębowski, 2019. "Multi-Indicator Assessment of Innovative Small-Scale Biomethane Technologies in Europe," Energies, MDPI, vol. 12(7), pages 1-32, April.
    18. Kari-Anne Lyng & Andreas Brekke, 2019. "Environmental Life Cycle Assessment of Biogas as a Fuel for Transport Compared with Alternative Fuels," Energies, MDPI, vol. 12(3), pages 1-12, February.
    19. Lönnqvist, Tomas & Grönkvist, Stefan & Sandberg, Thomas, 2017. "Forest-derived methane in the Swedish transport sector: A closing window?," Energy Policy, Elsevier, vol. 105(C), pages 440-450.
    20. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    21. Uusitalo, V. & Soukka, R. & Horttanainen, M. & Niskanen, A. & Havukainen, J., 2013. "Economics and greenhouse gas balance of biogas use systems in the Finnish transportation sector," Renewable Energy, Elsevier, vol. 51(C), pages 132-140.
    22. Liimatainen, Heikki & van Vliet, Oscar & Aplyn, David, 2019. "The potential of electric trucks – An international commodity-level analysis," Applied Energy, Elsevier, vol. 236(C), pages 804-814.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takman, Johanna & Andersson-Sköld, Yvonne, 2021. "A framework for barriers, opportunities, and potential solutions for renewable energy diffusion: Exemplified by liquefied biogas for heavy trucks," Transport Policy, Elsevier, vol. 110(C), pages 150-160.
    2. Li, Kaying & Acha, Salvador & Sunny, Nixon & Shah, Nilay, 2022. "Strategic transport fleet analysis of heavy goods vehicle technology for net-zero targets," Energy Policy, Elsevier, vol. 168(C).
    3. Sofia Dahlgren & Jonas Ammenberg, 2022. "Environmental Considerations Regarding Freight Transport among Buyers of Transport Services in Sweden," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    4. Roberto Murano & Natascia Maisano & Roberta Selvaggi & Gioacchino Pappalardo & Biagio Pecorino, 2021. "Critical Issues and Opportunities for Producing Biomethane in Italy," Energies, MDPI, vol. 14(9), pages 1-14, April.
    5. Gaoweijia Wang & Shanshan Li & Li Yang, 2022. "Research on the Pathway of Green Financial System to Implement the Realization of China’s Carbon Neutrality Target," IJERPH, MDPI, vol. 19(4), pages 1-18, February.
    6. James Gaffey & Cathal O’Donovan & Declan Murphy & Tracey O’Connor & David Walsh & Luis Alejandro Vergara & Kwame Donkor & Lalitha Gottumukkala & Sybrandus Koopmans & Enda Buckley & Kevin O’Connor & Jo, 2023. "Synergetic Benefits for a Pig Farm and Local Bioeconomy Development from Extended Green Biorefinery Value Chains," Sustainability, MDPI, vol. 15(11), pages 1-22, May.
    7. Pauls P. Argalis & Kristine Vegere, 2021. "Perspective Biomethane Potential and Its Utilization in the Transport Sector in the Current Situation of Latvia," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    8. Kirsi Kotilainen & Pami Aalto & Jussi Valta & Antti Rautiainen & Matti Kojo & Benjamin K. Sovacool, 2019. "From path dependence to policy mixes for Nordic electric mobility: Lessons for accelerating future transport transitions," Policy Sciences, Springer;Society of Policy Sciences, vol. 52(4), pages 573-600, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sperling, K. & Arler, F., 2020. "Local government innovation in the energy sector: A study of key actors’ strategies and arguments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    2. Sveinbjörnsson, Dadi & Ben Amer-Allam, Sara & Hansen, Anders Bavnhøj & Algren, Loui & Pedersen, Allan Schrøder, 2017. "Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality," Applied Energy, Elsevier, vol. 195(C), pages 922-941.
    3. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    4. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    5. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    6. Hvelplund, Frede & Østergaard, Poul Alberg & Meyer, Niels I., 2017. "Incentives and barriers for wind power expansion and system integration in Denmark," Energy Policy, Elsevier, vol. 107(C), pages 573-584.
    7. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
    8. Østergaard, Poul Alberg & Andersen, Anders N., 2023. "Optimal heat storage in district energy plants with heat pumps and electrolysers," Energy, Elsevier, vol. 275(C).
    9. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    11. Korberg, Andrei David & Skov, Iva Ridjan & Mathiesen, Brian Vad, 2020. "The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark," Energy, Elsevier, vol. 199(C).
    12. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    13. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    14. Herbes, Carsten & Rilling, Benedikt & Ringel, Marc, 2021. "Policy frameworks and voluntary markets for biomethane – How do different policies influence providers’ product strategies?," Energy Policy, Elsevier, vol. 153(C).
    15. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
    16. Rasheed, Rizwan & Tahir, Fizza & Yasar, Abdullah & Sharif, Faiza & Tabinda, Amtul Bari & Ahmad, Sajid Rashid & Wang, Yubo & Su, Yuehong, 2022. "Environmental life cycle analysis of a modern commercial-scale fibreglass composite-based biogas scrubbing system," Renewable Energy, Elsevier, vol. 185(C), pages 1261-1271.
    17. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    18. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    19. Hvelplund, Frede & Djørup, Søren, 2019. "Consumer ownership, natural monopolies and transition to 100% renewable energy systems," Energy, Elsevier, vol. 181(C), pages 440-449.
    20. Kari-Anne Lyng & Lise Skovsgaard & Henrik Klinge Jacobsen & Ole Jørgen Hanssen, 2020. "The implications of economic instruments on biogas value chains: a case study comparison between Norway and Denmark," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7125-7152, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4750-:d:262599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.