IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i17p4627-d260916.html
   My bibliography  Save this article

Evaluating Water Resource Assets Based on Fuzzy Comprehensive Evaluation Model: A Case Study of Wuhan City, China

Author

Listed:
  • Jingdong Zhang

    (Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
    School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China)

  • Jiatian Fu

    (Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
    School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China)

  • Chaoyang Liu

    (Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
    School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China)

  • Zhiguang Qu

    (Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
    School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China)

  • Yanan Li

    (Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
    School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China)

  • Fei Li

    (Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
    School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China)

  • Zhaofei Yang

    (Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
    School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China)

  • Luping Jiang

    (Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
    School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China)

Abstract

With the rapid development of China’s economy, the demand for water resources continues to sharply increase, which has gradually contributed to serious environmental problems. The Chinese government has proposed establishing a natural resource balance sheet, which is expected to solve this problem by assessing the value of water resources. The main purpose of this study was to assess the value of water resources in Wuhan from 2013 to 2017. Based on a fuzzy mathematical evaluation model, 15 indicators were chosen considering the three main aspects of resources, society, and the environment to construct a water resource evaluation indicator system. In addition, the analytic hierarchy process (AHP) and entropy weight methods were combined to determine the index weight. Based on this, we calculated the value of water resources in Wuhan from 2013 to 2017. The results demonstrated that the values of water resources in Wuhan from 2013 to 2017 were US$2.910 billion, US$5.006 billion, US$9.223 billion, US$14.167 billion, and US$7.189 billion, respectively. Therefore, this paper provides a scientific foundation for the rational establishment of water prices, the assessment of local natural resource assets, and the preparation of natural resource balance sheets.

Suggested Citation

  • Jingdong Zhang & Jiatian Fu & Chaoyang Liu & Zhiguang Qu & Yanan Li & Fei Li & Zhaofei Yang & Luping Jiang, 2019. "Evaluating Water Resource Assets Based on Fuzzy Comprehensive Evaluation Model: A Case Study of Wuhan City, China," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4627-:d:260916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/17/4627/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/17/4627/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Molinos-Senante, María & Donoso, Guillermo, 2016. "Water scarcity and affordability in urban water pricing: A case study of Chile," Utilities Policy, Elsevier, vol. 43(PA), pages 107-116.
    2. I. Heinz & M. Pulido-Velazquez & J. Lund & J. Andreu, 2007. "Hydro-economic Modeling in River Basin Management: Implications and Applications for the European Water Framework Directive," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(7), pages 1103-1125, July.
    3. Reddy, Sheila M.W. & McDonald, Robert I. & S. Maas, Alexander & Rogers, Anthony & Girvetz, Evan H. & North, Jeffrey & Molnar, Jennifer & Finley, Tim & Leathers, Gená & L. DiMuro, Johnathan, 2015. "Finding solutions to water scarcity: Incorporating ecosystem service values into business planning at The Dow Chemical Company’s Freeport, TX facility," Ecosystem Services, Elsevier, vol. 12(C), pages 94-107.
    4. Ekin Birol & Katia Karousakis & Phoebe Koundouri, 2006. "Using economic valuation techniques to inform water resources management: A survey and critical appraisal of available techniques and an application," DEOS Working Papers 0607, Athens University of Economics and Business.
    5. Ming-Feng Hung & Bin-Tzong Chie, 2013. "Residential Water Use: Efficiency, Affordability, and Price Elasticity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 275-291, January.
    6. Siti Nuryanah & Sardar M. N. Islam, 2015. "The Context of the Case Study," Palgrave Macmillan Books, in: Corporate Governance and Financial Management, chapter 5, pages 145-156, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zheng & Tian, Guiliang & Xia, Qing & Hu, Hao & Li, Jiawen, 2023. "Connotation, calculation and influencing factors of the water-use rights benchmark price: A case study of agricultural water use in the Ningxia Yellow River irrigation area," Agricultural Water Management, Elsevier, vol. 283(C).
    2. Ying Zhang & Xiaomeng Song & Xiaojun Wang & Zhifeng Jin & Feng Chen, 2023. "Multi-Level Fuzzy Comprehensive Evaluation for Water Resources Carrying Capacity in Xuzhou City, China," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    3. Xiaojun Zhi & Gulishengmu Anfuding & Guang Yang & Ping Gong & Chunxia Wang & Yi Li & Xiaolong Li & Pengfei Li & Chenxi Liu & Changlu Qiao & Yongli Gao, 2022. "Evaluation of the Water Resource Carrying Capacity on the North Slope of the Tianshan Mountains, Northwest China," Sustainability, MDPI, vol. 14(3), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sawssen Khlifi & Ghazi Zouari, 2021. "The Impact of CEO Overconfidence on Real Earnings Management: Evidence from M&A Transactions," Journal of Accounting and Management Information Systems, Faculty of Accounting and Management Information Systems, The Bucharest University of Economic Studies, vol. 20(3), pages 402-424, September.
    2. Bielsa, Jorge & Cazcarro, Ignacio & Sancho, Yolanda, 2011. "Integration of hydrological and economic approaches to water and land management in Mediterranean climates: an initial case study in agriculture," MPRA Paper 36445, University Library of Munich, Germany.
    3. Windle, Jill & Rolfe, John, 2010. "Assessing community values for reducing agricultural emissions to improve water quality and protect coral health in the Great Barrier Reef," Research Reports 107583, Australian National University, Environmental Economics Research Hub.
    4. Humberto Silva-Hidalgo & Ignacio Martín-Domínguez & María Alarcón-Herrera & Alfredo Granados-Olivas, 2009. "Mathematical Modelling for the Integrated Management of Water Resources in Hydrological Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 721-730, March.
    5. Pamela Katic, 2015. "Groundwater Spatial Dynamics and Endogenous Well Location," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 181-196, January.
    6. Hackbart, Vivian C.S. & de Lima, Guilherme T.N.P. & dos Santos, Rozely F., 2017. "Theory and practice of water ecosystem services valuation: Where are we going?," Ecosystem Services, Elsevier, vol. 23(C), pages 218-227.
    7. Valentin-Marian Antohi & Monica Laura Zlati & Romeo Victor Ionescu & Mihaela Neculita & Raluca Rusu & Aurelian Constantin, 2020. "Attracting European Funds in the Romanian Economy and Leverage Points for Securing their Sustainable Management: A Critical Auditing Analysis," Sustainability, MDPI, vol. 12(13), pages 1-27, July.
    8. Carmenta, Rachel & Cammelli, Federico & Dressler, Wolfram & Verbicaro, Camila & Zaehringer, Julie G., 2021. "Between a rock and a hard place: The burdens of uncontrolled fire for smallholders across the tropics," World Development, Elsevier, vol. 145(C).
    9. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    10. Gürlük, Serkan & Ward, Frank A., 2009. "Integrated basin management: Water and food policy options for Turkey," Ecological Economics, Elsevier, vol. 68(10), pages 2666-2678, August.
    11. Guangwei Huang, 2015. "From Water-Constrained to Water-Driven Sustainable Development—A Case of Water Policy Impact Evaluation," Sustainability, MDPI, vol. 7(7), pages 1-15, July.
    12. Anne Ventura & Van‐Loc Ta & Tristan Senga Kiessé & Stéphanie Bonnet, 2021. "Design of concrete : Setting a new basis for improving both durability and environmental performance," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 233-247, February.
    13. Boris Rumanko & Zuzana Lušňáková & Monika Moravanská & Mária Šajbidorová, 2021. "Succession as a Risk Process in the Survival of a Family Business—Case of Slovakia," JRFM, MDPI, vol. 14(10), pages 1-20, September.
    14. Michael O'Donnell & Robert P. Berrens, 2018. "Understanding Falling Municipal Water Demand in a Small City Dependent on the Declining Ogallala Aquifer: Case Study of Clovis, New Mexico," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-40, October.
    15. Kong, Ling & Wang, Dongbo, 2020. "Comparison of citations and attention of cover and non-cover papers," Journal of Informetrics, Elsevier, vol. 14(4).
    16. Kreins, P. & Heidecke, C. & Gömann, H. & Hirt, U. & Wendland, F., 2011. "Möglichkeiten und Grenzen der wissenschaftlichen Politikanalyse zur Umsetzung der Wasserrahmenrichtlinie – Anwendung eines hydro-ökonomischen Modellverbundes für das Weser Einzugsgebiet," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 46, March.
    17. Esteve, Paloma & Varela-Ortega, Consuelo & Blanco-Gutiérrez, Irene & Downing, Thomas E., 2015. "A hydro-economic model for the assessment of climate change impacts and adaptation in irrigated agriculture," Ecological Economics, Elsevier, vol. 120(C), pages 49-58.
    18. Aparicio, Jesus & Tenza-Abril, Antonio & Borg, Malcolm & Galea, John & Candela, Lucila, 2018. "Agricultural irrigation of vine crops from desalinated and brackish groundwater under an economic perspective. A case study in Siġġiewi, Malta," MPRA Paper 92268, University Library of Munich, Germany, revised 04 Sep 2018.
    19. Laura DIACONU (MAXIM), 2021. "The behaviour of airlines’ passengers in the context of COVID-19 pandemic," CES Working Papers, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13(2), pages 230-242, July.
    20. Monica Laura ZLATI & Cristian MIRICA, 2021. "Biological Assets Accounting In The Agricultural Sector," European Journal of Accounting, Finance & Business, "Stefan cel Mare" University of Suceava, Romania - Faculty of Economics and Public Administration, West University of Timisoara, Romania - Faculty of Economics and Business Administration, vol. 15(25), pages 1-7, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4627-:d:260916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.