IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i16p4338-d256702.html
   My bibliography  Save this article

Optimal Sizing of Irregularly Arranged Boreholes Using Duct-Storage Model

Author

Listed:
  • Seung-Hoon Park

    (Division of Architecture, INHA University, Inha-ro 100, Michuhol-gu, Incheon 22212, Korea)

  • Eui-Jong Kim

    (Division of Architecture, INHA University, Inha-ro 100, Michuhol-gu, Incheon 22212, Korea)

Abstract

As the sizing of borehole heat exchangers (BHEs) is crucial for ground-source heat pump systems, which are becoming increasingly complex and diverse, novel sizing tools are required that can size both boreholes and connected systems. Thus, an optimization-based sizing method that runs in TRNSYS with other component models is proposed. With a focus on the feasibility of the method for typical BHEs, the sizing of irregularly placed boreholes using the well-known duct-storage (DST) model that inherently cannot describe irregular borefields is examined. Recently developed modification methods are used for the DST model. The proposed sizing method is compared with the existing ground loop heat exchanger (GLHE) sizing program. The results indicate that the proposed method has a genuine difference of approximately 3% compared with the GLHE, and the difference increases with the thermal-interference effects. A regression-based method selected to modify the DST model for describing irregular borefields exhibits acceptable sizing results (approximately 5% for test cases) despite the genuine difference. This study is the first to use the DST model for sizing BHEs under irregular borefield configurations, and the tests indicated acceptable results with an approximate difference of one borehole among a total of 30 boreholes in the test cases.

Suggested Citation

  • Seung-Hoon Park & Eui-Jong Kim, 2019. "Optimal Sizing of Irregularly Arranged Boreholes Using Duct-Storage Model," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4338-:d:256702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/16/4338/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/16/4338/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Shugang & Gong, Xuemei, 2018. "A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 228(C), pages 1399-1412.
    2. Park, Seung-Hoon & Jang, Yong-Sung & Kim, Eui-Jong, 2018. "Using duct storage (DST) model for irregular arrangements of borehole heat exchangers," Energy, Elsevier, vol. 142(C), pages 851-861.
    3. Seung-Hoon Park & Jung-Yeol Kim & Yong-Sung Jang & Eui-Jong Kim, 2017. "Development of a Multi-Objective Sizing Method for Borehole Heat Exchangers during the Early Design Phase," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    4. Ciani Bassetti, Martina & Consoli, Daniele & Manente, Giovanni & Lazzaretto, Andrea, 2018. "Design and off-design models of a hybrid geothermal-solar power plant enhanced by a thermal storage," Renewable Energy, Elsevier, vol. 128(PB), pages 460-472.
    5. Zhang, Changxing & Hu, Songtao & Liu, Yufeng & Wang, Qing, 2016. "Optimal design of borehole heat exchangers based on hourly load simulation," Energy, Elsevier, vol. 116(P1), pages 1180-1190.
    6. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
    7. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Zhihua & Wang, Shugang, 2018. "A model-based design optimization strategy for ground source heat pump systems with integrated photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 214(C), pages 178-190.
    8. Kim, Eui-Jong & Bernier, Michel & Cauret, Odile & Roux, Jean-Jacques, 2014. "A hybrid reduced model for borehole heat exchangers over different time-scales and regions," Energy, Elsevier, vol. 77(C), pages 318-326.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seung-Hoon Park & Yong-Sung Jang & Eui-Jong Kim, 2021. "Design and Performance Evaluation of a Heat Pump System Utilizing a Permanent Dewatering System," Energies, MDPI, vol. 14(8), pages 1-16, April.
    2. Seung-Min Lee & Seung-Hoon Park & Yong-Sung Jang & Eui-Jong Kim, 2021. "Proposition of Design Capacity of Borehole Heat Exchangers for Use in the Schematic-Design Stage," Energies, MDPI, vol. 14(4), pages 1-17, February.
    3. Farzanehkhameneh, Pooya & Soltani, M. & Moradi Kashkooli, Farshad & Ziabasharhagh, Masoud, 2020. "Optimization and energy-economic assessment of a geothermal heat pump system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Xuedan Zhang & Tiantian Zhang & Bingxi Li & Yiqiang Jiang, 2019. "Comparison of Four Methods for Borehole Heat Exchanger Sizing Subject to Thermal Response Test Parameter Estimation," Energies, MDPI, vol. 12(21), pages 1-30, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    3. Roselli, C. & Diglio, G. & Sasso, M. & Tariello, F., 2019. "A novel energy index to assess the impact of a solar PV-based ground source heat pump on the power grid," Renewable Energy, Elsevier, vol. 143(C), pages 488-500.
    4. Pan, Aiqiang & McCartney, John S. & Lu, Lin & You, Tian, 2020. "A novel analytical multilayer cylindrical heat source model for vertical ground heat exchangers installed in layered ground," Energy, Elsevier, vol. 200(C).
    5. Davide Menegazzo & Giulia Lombardo & Sergio Bobbo & Michele De Carli & Laura Fedele, 2022. "State of the Art, Perspective and Obstacles of Ground-Source Heat Pump Technology in the European Building Sector: A Review," Energies, MDPI, vol. 15(7), pages 1-25, April.
    6. Maria Manzoor & Usman Rauf Kamboh & Sumaira Gulshan & Sven Tomforde & Iram Gul & Alighazi Siddiqui & Muhammad Arshad, 2023. "Optimizing Sustainable Phytoextraction of Lead from Contaminated Soil Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN)," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    7. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Liu, Zhijian & Li, Yuanwei & Xu, Wei & Yin, Hang & Gao, Jun & Jin, Guangya & Lun, Liyong & Jin, Guohui, 2019. "Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case," Energy, Elsevier, vol. 173(C), pages 28-37.
    9. Seung-Hoon Park & Jung-Yeol Kim & Yong-Sung Jang & Eui-Jong Kim, 2017. "Development of a Multi-Objective Sizing Method for Borehole Heat Exchangers during the Early Design Phase," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    10. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    11. Biglarian, Hassan & Abdollahi, Sina, 2022. "Utilization of on-grid photovoltaic panels to offset electricity consumption of a residential ground source heat pump," Energy, Elsevier, vol. 243(C).
    12. Elisa Marrasso & Carlo Roselli & Francesco Tariello, 2020. "Comparison of Two Solar PV-Driven Air Conditioning Systems with Different Tracking Modes," Energies, MDPI, vol. 13(14), pages 1-24, July.
    13. Chen, Yuzhu & Hua, Huilian & Wang, Jun & Lund, Peter D., 2021. "Thermodynamic performance analysis and modified thermo-ecological cost optimization of a hybrid district heating system considering energy levels," Energy, Elsevier, vol. 224(C).
    14. Choi, Hwi-Ung & Choi, Kwang-Hwan, 2023. "Numerical study on the performance of a solar-assisted heat pump coupled with a photovoltaic-thermal air heater," Energy, Elsevier, vol. 285(C).
    15. Noye, Sarah & Mulero Martinez, Rubén & Carnieletto, Laura & De Carli, Michele & Castelruiz Aguirre, Amaia, 2022. "A review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    16. Allouhi, Amine, 2022. "Techno-economic and environmental accounting analyses of an innovative power-to-heat concept based on solar PV systems and a geothermal heat pump," Renewable Energy, Elsevier, vol. 191(C), pages 649-661.
    17. Musawenkosi Lethumcebo Thanduxolo Zulu & Rudiren Pillay Carpanen & Remy Tiako, 2023. "A Comprehensive Review: Study of Artificial Intelligence Optimization Technique Applications in a Hybrid Microgrid at Times of Fault Outbreaks," Energies, MDPI, vol. 16(4), pages 1-32, February.
    18. Paul Christodoulides & Christakis Christou & Georgios A. Florides, 2024. "Ground Source Heat Pumps in Buildings Revisited and Prospects," Energies, MDPI, vol. 17(13), pages 1-36, July.
    19. You, Tian & Wu, Wei & Yang, Hongxing & Liu, Jiankun & Li, Xianting, 2021. "Hybrid photovoltaic/thermal and ground source heat pump: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities," Energies, MDPI, vol. 14(13), pages 1-48, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4338-:d:256702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.