IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i10p2772-d231240.html
   My bibliography  Save this article

A Sustainable Crowdsourced Delivery System to Foster Free-Floating Bike-Sharing

Author

Listed:
  • Mario Binetti

    (Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via Edoardo Orabona, 4, 70125 Bari, Italy)

  • Leonardo Caggiani

    (Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via Edoardo Orabona, 4, 70125 Bari, Italy)

  • Rosalia Camporeale

    (Division of Transport and Roads, Department of Technology and Society, Lund University, P.O. Box 118, 221 00 Lund, Sweden)

  • Michele Ottomanelli

    (Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via Edoardo Orabona, 4, 70125 Bari, Italy)

Abstract

Since bicycles and bike-sharing systems are becoming increasingly important in modern transportation contexts, we suggest in this paper an alternative method to incorporate cycling among the freight transport alternatives within urban areas. We propose pursuing a sustainable initiative of crowdsourced delivery where some of the urban good deliveries may be voluntarily undertaken by users of the free-floating bike-sharing systems while following their prefixed route in exchange for some kind of reward. We believe that a network design model that allows properly allocating the resources of the bike-shared mobility service could improve the potential of crowdshipping, making it a viable support and supplement for the local postal services, and more easily accepted and adopted in urban contexts. An application to a case study has been embodied to show the effectiveness and advantages of our proposal.

Suggested Citation

  • Mario Binetti & Leonardo Caggiani & Rosalia Camporeale & Michele Ottomanelli, 2019. "A Sustainable Crowdsourced Delivery System to Foster Free-Floating Bike-Sharing," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2772-:d:231240
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/10/2772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/10/2772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao Chen & Shenle Pan, 2016. "Using the Crowd of Taxis to Last Mile Delivery in E-Commerce: a methodological research," Post-Print hal-01480533, HAL.
    2. Wenyi Chen & Martijn Mes & Marco Schutten, 2018. "Multi-hop driver-parcel matching problem with time windows," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 517-553, September.
    3. Ermagun, Alireza & Stathopoulos, Amanda, 2018. "To bid or not to bid: An empirical study of the supply determinants of crowd-shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 468-483.
    4. Johanna Kopp & Regine Gerike & Kay Axhausen, 2015. "Do sharing people behave differently? An empirical evaluation of the distinctive mobility patterns of free-floating car-sharing members," Transportation, Springer, vol. 42(3), pages 449-469, May.
    5. Wei Qi & Lefei Li & Sheng Liu & Zuo-Jun Max Shen, 2018. "Shared Mobility for Last-Mile Delivery: Design, Operational Prescriptions, and Environmental Impact," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 737-751, October.
    6. Cleophas, Catherine & Cottrill, Caitlin & Ehmke, Jan Fabian & Tierney, Kevin, 2019. "Collaborative urban transportation: Recent advances in theory and practice," European Journal of Operational Research, Elsevier, vol. 273(3), pages 801-816.
    7. Valentina Carbone & Aurélien Rouquet & Christine Roussat, 2017. "The Rise of Crowd Logistics: A New Way to Co‐Create Logistics Value," Post-Print hal-03118967, HAL.
    8. Archetti, Claudia & Savelsbergh, Martin & Speranza, M. Grazia, 2016. "The Vehicle Routing Problem with Occasional Drivers," European Journal of Operational Research, Elsevier, vol. 254(2), pages 472-480.
    9. Becker, Henrik & Ciari, Francesco & Axhausen, Kay W., 2017. "Comparing car-sharing schemes in Switzerland: User groups and usage patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 17-29.
    10. Cintia Machado de Oliveira & Renata Albergaria De Mello Bandeira & George Vasconcelos Goes & Daniel Neves Schmitz Gonçalves & Márcio De Almeida D’Agosto, 2017. "Sustainable Vehicles-Based Alternatives in Last Mile Distribution of Urban Freight Transport: A Systematic Literature Review," Sustainability, MDPI, vol. 9(8), pages 1-15, July.
    11. Mingyang Du & Lin Cheng, 2018. "Better Understanding the Characteristics and Influential Factors of Different Travel Patterns in Free-Floating Bike Sharing: Evidence from Nanjing, China," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    12. Kafle, Nabin & Zou, Bo & Lin, Jane, 2017. "Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 62-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marisdea Castiglione & Antonio Comi & Rosita De Vincentis & Andreea Dumitru & Marialisa Nigro, 2022. "Delivering in Urban Areas: A Probabilistic-Behavioral Approach for Forecasting the Use of Electric Micromobility," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    2. Gleb V. Savin, 2021. "The smart city transport and logistics system: Theory, methodology and practice," Upravlenets, Ural State University of Economics, vol. 12(6), pages 67-86, October.
    3. Henri Kervola & Erika Kallionpää & Heikki Liimatainen, 2022. "Delivering Goods Using a Baby Pram: The Sustainability of Last-Mile Logistics Business Models," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    4. Kexin Bi & Mengke Yang & Latif Zahid & Xiaoguang Zhou, 2020. "A New Solution for City Distribution to Achieve Environmental Benefits within the Trend of Green Logistics: A Case Study in China," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    5. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    6. Gabriella Balacco & Mario Binetti & Leonardo Caggiani & Michele Ottomanelli, 2021. "A Novel Distributed System of e-Vehicle Charging Stations Based on Pumps as Turbine to Support Sustainable Micromobility," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    7. Mohri, Seyed Sina & Nassir, Neema & Thompson, Russell G. & Lavieri, Patricia Sauri, 2024. "Public transportation-based crowd-shipping initiatives: Are users willing to participate? Why not?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    8. Magdalena Mucowska, 2021. "Trends of Environmentally Sustainable Solutions of Urban Last-Mile Deliveries on the E-Commerce Market—A Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
    9. Andrii Galkin & Tibor Schlosser & Ivan Cardenas & Dominika Hodakova & Silvia Capayova, 2021. "Freight Demand and Supply Assessment for Implementation of Crowdsourcing Technology: A Case Study in Bratislava, Slovakia," Sustainability, MDPI, vol. 13(7), pages 1-22, March.
    10. Suprava Chakraborty & Nallapaneni Manoj Kumar & Arunkumar Jayakumar & Santanu Kumar Dash & Devaraj Elangovan, 2021. "Selected Aspects of Sustainable Mobility Reveals Implementable Approaches and Conceivable Actions," Sustainability, MDPI, vol. 13(22), pages 1-31, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pourrahmani, Elham & Jaller, Miguel, 2021. "Crowdshipping in last mile deliveries: Operational challenges and research opportunities," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    2. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2019. "An exact solution method for the capacitated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 589-604.
    3. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2021. "A multi-period analysis of the integrated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 483-499.
    4. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    5. Azcuy, Irecis & Agatz, Niels & Giesen, Ricardo, 2021. "Designing integrated urban delivery systems using public transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    6. Bathke, Henrik & Hartmann, Evi, 2021. "Accepting a crowdsourced delivery - A choice-based conjoint analysis," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 65-95, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    7. Shen, Hui & Lin, Jane, 2020. "Investigation of crowdshipping delivery trip production with real-world data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    8. Zehtabian, Shohre & Larsen, Christian & Wøhlk, Sanne, 2022. "Estimation of the arrival time of deliveries by occasional drivers in a crowd-shipping setting," European Journal of Operational Research, Elsevier, vol. 303(2), pages 616-632.
    9. Juan Guillermo Urzúa-Morales & Juan Pedro Sepulveda-Rojas & Miguel Alfaro & Guillermo Fuertes & Rodrigo Ternero & Manuel Vargas, 2020. "Logistic Modeling of the Last Mile: Case Study Santiago, Chile," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    10. Punel, Aymeric & Stathopoulos, Amanda, 2017. "Modeling the acceptability of crowdsourced goods deliveries: Role of context and experience effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 18-38.
    11. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2021. "Crowdsourced delivery: A review of platforms and academic literature," Omega, Elsevier, vol. 98(C).
    12. Yıldız, Barış, 2021. "Package routing problem with registered couriers and stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    13. Cleophas, Catherine & Cottrill, Caitlin & Ehmke, Jan Fabian & Tierney, Kevin, 2019. "Collaborative urban transportation: Recent advances in theory and practice," European Journal of Operational Research, Elsevier, vol. 273(3), pages 801-816.
    14. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2024. "Compensation guarantees in crowdsourced delivery: Impact on platform and driver welfare," Omega, Elsevier, vol. 122(C).
    15. Michele D. Simoni & Edoardo Marcucci & Valerio Gatta & Christian G. Claudel, 2020. "Potential last-mile impacts of crowdshipping services: a simulation-based evaluation," Transportation, Springer, vol. 47(4), pages 1933-1954, August.
    16. Stokkink, Patrick & Cordeau, Jean-François & Geroliminis, Nikolas, 2024. "A column and row generation approach to the crowd-shipping problem with transfers," Omega, Elsevier, vol. 128(C).
    17. Mofidi, Seyed Shahab & Pazour, Jennifer A., 2019. "When is it beneficial to provide freelance suppliers with choice? A hierarchical approach for peer-to-peer logistics platforms," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 1-23.
    18. Boysen, Nils & Emde, Simon & Schwerdfeger, Stefan, 2022. "Crowdshipping by employees of distribution centers: Optimization approaches for matching supply and demand," European Journal of Operational Research, Elsevier, vol. 296(2), pages 539-556.
    19. Wang, Li & Xu, Min & Qin, Hu, 2023. "Joint optimization of parcel allocation and crowd routing for crowdsourced last-mile delivery," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 111-135.
    20. Alireza Ermagun & Ali Shamshiripour & Amanda Stathopoulos, 2020. "Performance analysis of crowd-shipping in urban and suburban areas," Transportation, Springer, vol. 47(4), pages 1955-1985, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:10:p:2772-:d:231240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.