IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v303y2022i2p616-632.html
   My bibliography  Save this article

Estimation of the arrival time of deliveries by occasional drivers in a crowd-shipping setting

Author

Listed:
  • Zehtabian, Shohre
  • Larsen, Christian
  • Wøhlk, Sanne

Abstract

The success of e-commerce business offering same-day delivery depends on customer satisfaction. To speed up deliveries and lower costs, some companies have been using private individuals as non-dedicated drivers to perform pickup and delivery tasks for online customers. Such delivery systems are known as crowd-shipping. Customers have come to expect an accurate estimate for the delivery times of their online orders. The coordination of online deliveries with private individuals is done by a crowd-shipping platform. In this paper, we focus on the estimation of pickup and delivery times. This is a challenging job because not only are the requests unknown and submitted dynamically, but so is the pool of drivers, i.e. delivery capacity. We model the problem as a Markov decision process and integrate it into a simulation study. To improve the estimates that can be done by a naive policy, we propose two policies that use lookahead: one with a fixed lookahead horizon and one with a dynamic. Our numerical experiments demonstrate that a lookahead policy with dynamically adjusted horizon outperforms the other two policies in terms of estimation accuracy, which is up to 19% higher in some instances.

Suggested Citation

  • Zehtabian, Shohre & Larsen, Christian & Wøhlk, Sanne, 2022. "Estimation of the arrival time of deliveries by occasional drivers in a crowd-shipping setting," European Journal of Operational Research, Elsevier, vol. 303(2), pages 616-632.
  • Handle: RePEc:eee:ejores:v:303:y:2022:i:2:p:616-632
    DOI: 10.1016/j.ejor.2022.02.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722001710
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.02.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin W.P Savelsbergh & Marlin W. Ulmer, 2022. "Challenges and opportunities in crowdsourced delivery planning and operations," 4OR, Springer, vol. 20(1), pages 1-21, March.
    2. Stacy A. Voccia & Ann Melissa Campbell & Barrett W. Thomas, 2019. "The Same-Day Delivery Problem for Online Purchases," Service Science, INFORMS, vol. 53(1), pages 167-184, February.
    3. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2021. "Crowdsourced delivery: A review of platforms and academic literature," Omega, Elsevier, vol. 98(C).
    4. Wenyi Chen & Martijn Mes & Marco Schutten, 2018. "Multi-hop driver-parcel matching problem with time windows," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 517-553, September.
    5. Barrett W. Thomas, 2007. "Waiting Strategies for Anticipating Service Requests from Known Customer Locations," Transportation Science, INFORMS, vol. 41(3), pages 319-331, August.
    6. Cleophas, Catherine & Cottrill, Caitlin & Ehmke, Jan Fabian & Tierney, Kevin, 2019. "Collaborative urban transportation: Recent advances in theory and practice," European Journal of Operational Research, Elsevier, vol. 273(3), pages 801-816.
    7. Martin Savelsbergh & Tom Van Woensel, 2016. "50th Anniversary Invited Article—City Logistics: Challenges and Opportunities," Transportation Science, INFORMS, vol. 50(2), pages 579-590, May.
    8. Ehmke, Jan Fabian & Campbell, Ann Melissa & Urban, Timothy L., 2015. "Ensuring service levels in routing problems with time windows and stochastic travel times," European Journal of Operational Research, Elsevier, vol. 240(2), pages 539-550.
    9. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    10. Soeffker, Ninja & Ulmer, Marlin W. & Mattfeld, Dirk C., 2022. "Stochastic dynamic vehicle routing in the light of prescriptive analytics: A review," European Journal of Operational Research, Elsevier, vol. 298(3), pages 801-820.
    11. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2010. "The Vehicle Routing Problem with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 44(4), pages 474-492, November.
    12. Archetti, Claudia & Savelsbergh, Martin & Speranza, M. Grazia, 2016. "The Vehicle Routing Problem with Occasional Drivers," European Journal of Operational Research, Elsevier, vol. 254(2), pages 472-480.
    13. Iman Dayarian & Martin Savelsbergh, 2020. "Crowdshipping and Same‐day Delivery: Employing In‐store Customers to Deliver Online Orders," Production and Operations Management, Production and Operations Management Society, vol. 29(9), pages 2153-2174, September.
    14. Homberger, Jorg & Gehring, Hermann, 2005. "A two-phase hybrid metaheuristic for the vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 162(1), pages 220-238, April.
    15. Kafle, Nabin & Zou, Bo & Lin, Jane, 2017. "Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 62-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Wyrowski & Nils Boysen & Dirk Briskorn & Stefan Schwerdfeger, 2024. "Public transport crowdshipping: moving shipments among parcel lockers located at public transport stations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 873-907, September.
    2. Ausseil, Rosemonde & Ulmer, Marlin W. & Pazour, Jennifer A., 2024. "Online acceptance probability approximation in peer-to-peer transportation," Omega, Elsevier, vol. 123(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    2. Ausseil, Rosemonde & Ulmer, Marlin W. & Pazour, Jennifer A., 2024. "Online acceptance probability approximation in peer-to-peer transportation," Omega, Elsevier, vol. 123(C).
    3. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2024. "Compensation guarantees in crowdsourced delivery: Impact on platform and driver welfare," Omega, Elsevier, vol. 122(C).
    4. Wang, Li & Xu, Min & Qin, Hu, 2023. "Joint optimization of parcel allocation and crowd routing for crowdsourced last-mile delivery," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 111-135.
    5. Boysen, Nils & Emde, Simon & Schwerdfeger, Stefan, 2022. "Crowdshipping by employees of distribution centers: Optimization approaches for matching supply and demand," European Journal of Operational Research, Elsevier, vol. 296(2), pages 539-556.
    6. Martin W.P Savelsbergh & Marlin W. Ulmer, 2022. "Challenges and opportunities in crowdsourced delivery planning and operations," 4OR, Springer, vol. 20(1), pages 1-21, March.
    7. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    8. Koch, Sebastian & Klein, Robert, 2020. "Route-based approximate dynamic programming for dynamic pricing in attended home delivery," European Journal of Operational Research, Elsevier, vol. 287(2), pages 633-652.
    9. Wang, Haibo & Alidaee, Bahram, 2023. "White-glove service delivery: A quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    10. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2021. "A multi-period analysis of the integrated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 483-499.
    11. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    12. Mancini, Simona & Gansterer, Margaretha, 2022. "Bundle generation for last-mile delivery with occasional drivers," Omega, Elsevier, vol. 108(C).
    13. Mario Binetti & Leonardo Caggiani & Rosalia Camporeale & Michele Ottomanelli, 2019. "A Sustainable Crowdsourced Delivery System to Foster Free-Floating Bike-Sharing," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    14. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2019. "An exact solution method for the capacitated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 589-604.
    15. Nieto-Isaza, Santiago & Fontaine, Pirmin & Minner, Stefan, 2022. "The value of stochastic crowd resources and strategic location of mini-depots for last-mile delivery: A Benders decomposition approach," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 62-79.
    16. Yu, Vincent F. & Jodiawan, Panca & Redi, A.A.N. Perwira, 2022. "Crowd-shipping problem with time windows, transshipment nodes, and delivery options," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    17. Di Puglia Pugliese, Luigi & Ferone, Daniele & Macrina, Giusy & Festa, Paola & Guerriero, Francesca, 2023. "The crowd-shipping with penalty cost function and uncertain travel times," Omega, Elsevier, vol. 115(C).
    18. Chen, Xinwei & Wang, Tong & Thomas, Barrett W. & Ulmer, Marlin W., 2023. "Same-day delivery with fair customer service," European Journal of Operational Research, Elsevier, vol. 308(2), pages 738-751.
    19. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    20. Azcuy, Irecis & Agatz, Niels & Giesen, Ricardo, 2021. "Designing integrated urban delivery systems using public transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:303:y:2022:i:2:p:616-632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.