IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v30y2018i3d10.1007_s10696-016-9273-3.html
   My bibliography  Save this article

Multi-hop driver-parcel matching problem with time windows

Author

Listed:
  • Wenyi Chen

    (University of Twente
    ESC Rennes School of Business)

  • Martijn Mes

    (University of Twente)

  • Marco Schutten

    (University of Twente)

Abstract

Crowdsourced shipping can result in significant economic and social benefits. For a shipping company, it has a potential cost advantage and creates opportunities for faster deliveries. For the society, it can provide desirable results by reducing congestion and air pollution. Despite the great potential, crowdsourced shipping is not well studied. With the aim of using the spare capacities along the existing transportation flows of the crowd to deliver small-to-medium freight volumes, this paper defines the multi-driver multi-parcel matching problem and proposes a general ILP formulation, which incorporates drivers’ maximum detour, capacity limits, and the option of transferring parcels between drivers. Due to the high computational complexity, we develop two heuristics to solve the problem. The numerical study shows that crowdsourced shipping can be an economic viable and sustainable option, depending on the spatial characteristics of the network and drivers’ schedules. Furthermore, the added benefits increase with an increasing number of participating drivers and parcels.

Suggested Citation

  • Wenyi Chen & Martijn Mes & Marco Schutten, 2018. "Multi-hop driver-parcel matching problem with time windows," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 517-553, September.
  • Handle: RePEc:spr:flsman:v:30:y:2018:i:3:d:10.1007_s10696-016-9273-3
    DOI: 10.1007/s10696-016-9273-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-016-9273-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-016-9273-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    2. Fatnassi, Ezzeddine & Chaouachi, Jouhaina & Klibi, Walid, 2015. "Planning and operating a shared goods and passengers on-demand rapid transit system for sustainable city-logistics," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 440-460.
    3. Lindholm, Maria & Behrends, Sönke, 2012. "Challenges in urban freight transport planning – a review in the Baltic Sea Region," Journal of Transport Geography, Elsevier, vol. 22(C), pages 129-136.
    4. Arslan, A.M. & Agatz, N.A.H. & Kroon, L.G. & Zuidwijk, R.A., 2016. "Crowdsourced Delivery: A Dynamic Pickup and Delivery Problem with Ad-hoc Drivers," ERIM Report Series Research in Management ERS-2016-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Li, Baoxiang & Krushinsky, Dmitry & Reijers, Hajo A. & Van Woensel, Tom, 2014. "The Share-a-Ride Problem: People and parcels sharing taxis," European Journal of Operational Research, Elsevier, vol. 238(1), pages 31-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    2. Fessler, Andreas & Cash, Philip & Thorhauge, Mikkel & Haustein, Sonja, 2023. "A public transport based crowdshipping concept: Results of a field test in Denmark," Transport Policy, Elsevier, vol. 134(C), pages 106-118.
    3. Zehtabian, Shohre & Larsen, Christian & Wøhlk, Sanne, 2022. "Estimation of the arrival time of deliveries by occasional drivers in a crowd-shipping setting," European Journal of Operational Research, Elsevier, vol. 303(2), pages 616-632.
    4. Kong, Xiang T.R. & Kang, Kai & Zhong, Ray Y. & Luo, Hao & Xu, Su Xiu, 2021. "Cyber physical system-enabled on-demand logistics trading," International Journal of Production Economics, Elsevier, vol. 233(C).
    5. Yıldız, Barış, 2021. "Package routing problem with registered couriers and stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    6. Shen, Hui & Lin, Jane, 2020. "Investigation of crowdshipping delivery trip production with real-world data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    7. Allahviranloo, Mahdieh & Baghestani, Amirhossein, 2019. "A dynamic crowdshipping model and daily travel behavior," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 175-190.
    8. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2021. "A multi-period analysis of the integrated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 483-499.
    9. Azcuy, Irecis & Agatz, Niels & Giesen, Ricardo, 2021. "Designing integrated urban delivery systems using public transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    10. Mario Binetti & Leonardo Caggiani & Rosalia Camporeale & Michele Ottomanelli, 2019. "A Sustainable Crowdsourced Delivery System to Foster Free-Floating Bike-Sharing," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    11. Stokkink, Patrick & Cordeau, Jean-François & Geroliminis, Nikolas, 2024. "A column and row generation approach to the crowd-shipping problem with transfers," Omega, Elsevier, vol. 128(C).
    12. Heru Susanto & Nurul Kemaluddin, 2023. "Innovative Blockchain-Based Tracking Systems, A Technology Acceptance for Cross-Border Runners during and Post-Pandemic," Sustainability, MDPI, vol. 15(8), pages 1-34, April.
    13. Wang, Li & Xu, Min & Qin, Hu, 2023. "Joint optimization of parcel allocation and crowd routing for crowdsourced last-mile delivery," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 111-135.
    14. John Michael Maxel Okoche & Anthea Amadi-Echendu & Marcia Mkansi & Wellington Chakuzira & Phumlani Masilela, 2024. "Exploring the Risks of Green Crowdsourcing in South Africa: The Case of Dilivari," Sustainability, MDPI, vol. 16(22), pages 1-28, November.
    15. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2019. "An exact solution method for the capacitated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 589-604.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    2. Tao Yang & Weixin Wang, 2022. "Logistics Network Distribution Optimization Based on Vehicle Sharing," Sustainability, MDPI, vol. 14(4), pages 1-12, February.
    3. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2021. "Crowdsourced delivery: A review of platforms and academic literature," Omega, Elsevier, vol. 98(C).
    4. Cleophas, Catherine & Cottrill, Caitlin & Ehmke, Jan Fabian & Tierney, Kevin, 2019. "Collaborative urban transportation: Recent advances in theory and practice," European Journal of Operational Research, Elsevier, vol. 273(3), pages 801-816.
    5. Martin Savelsbergh & Tom Van Woensel, 2016. "50th Anniversary Invited Article—City Logistics: Challenges and Opportunities," Transportation Science, INFORMS, vol. 50(2), pages 579-590, May.
    6. Allahviranloo, Mahdieh & Baghestani, Amirhossein, 2019. "A dynamic crowdshipping model and daily travel behavior," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 175-190.
    7. Arslan, A.M. & Agatz, N.A.H. & Kroon, L.G. & Zuidwijk, R.A., 2016. "Crowdsourced Delivery: A Dynamic Pickup and Delivery Problem with Ad-hoc Drivers," ERIM Report Series Research in Management ERS-2016-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    9. Meng, Zhiyi & Li, Eldon Y. & Qiu, Rui, 2020. "Environmental sustainability with free-floating carsharing services: An on-demand refueling recommendation system for Car2go in Seattle," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    10. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    11. Han Zhang & Yongbo Lv & Jianwei Guo, 2022. "New Development Direction of Underground Logistics from the Perspective of Public Transport: A Systematic Review Based on Scientometrics," Sustainability, MDPI, vol. 14(6), pages 1-31, March.
    12. Punel, Aymeric & Stathopoulos, Amanda, 2017. "Modeling the acceptability of crowdsourced goods deliveries: Role of context and experience effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 18-38.
    13. Peng, Zixuan & Shan, Wenxuan & Zhu, Xiaoning & Yu, Bin, 2022. "Many-to-one stable matching for taxi-sharing service with selfish players," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 255-279.
    14. Azcuy, Irecis & Agatz, Niels & Giesen, Ricardo, 2021. "Designing integrated urban delivery systems using public transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    15. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou, 2022. "On understanding the impacts of shared public transportation on urban traffic and road safety using an agent-based simulation with heterogeneous fleets: a case study of Casablanca city," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 3893-3932, December.
    16. Yang, Xuan & Kong, Xiang T.R. & Huang, George Q., 2024. "Synchronizing crowdsourced co-modality between passenger and freight transportation services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    17. Sun, Yanshuo & Chen, Zhi-Long & Zhang, Lei, 2020. "Nonprofit peer-to-peer ridesharing optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    18. He, Dongdong & Ceder, Avishai (Avi) & Zhang, Wenyi & Guan, Wei & Qi, Geqi, 2023. "Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    19. Cai, Hua & Wang, Xi & Adriaens, Peter & Xu, Ming, 2019. "Environmental benefits of taxi ride sharing in Beijing," Energy, Elsevier, vol. 174(C), pages 503-508.
    20. Al-Kanj, Lina & Nascimento, Juliana & Powell, Warren B., 2020. "Approximate dynamic programming for planning a ride-hailing system using autonomous fleets of electric vehicles," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1088-1106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:30:y:2018:i:3:d:10.1007_s10696-016-9273-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.