IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i5p1367-d143628.html
   My bibliography  Save this article

Spatial Changes of Urban Heat Island Formation in the Colombo District, Sri Lanka: Implications for Sustainability Planning

Author

Listed:
  • Manjula Ranagalage

    (Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
    Department of Environmental Management, Faculty of Social Sciences and Humanities, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka)

  • Ronald C. Estoque

    (National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan)

  • Xinmin Zhang

    (Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan)

  • Yuji Murayama

    (Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan)

Abstract

The formation of surface urban heat islands (SUHIs) can cause significant adverse impacts on the quality of living in urban areas. Monitoring the spatial patterns and trajectories of UHI formations could be helpful to urban planners in crafting appropriate mitigation and adaptation measures. This study examined the spatial pattern of SUHI formation in the Colombo District (Sri Lanka), based on land surface temperature (LST), a normalized difference vegetation index (NDVI), a normalized difference built-up index (NDBI), and population density (PD) using a geospatial-based hot and cold spot analysis tool. Here, ‘hot spots’ refers to areas with significant spatial clustering of high variable values, while ‘cold spots’ refers to areas with significant spatial clustering of low variable values. The results indicated that between 1997 and 2017, 32.7% of the 557 divisions in the Colombo District persisted as hot spots. These hot spots were characterized by a significant clustering of high composite index values resulting from the four variables (LST, NDVI (inverted), NDBI, and PD). This study also identified newly emerging hot spots, which accounted for 49 divisions (8.8%). Large clusters of hot spots between both time points were found on the western side of the district, while cold spots were found on the eastern side of the district. The areas identified as hot spots are the more urbanized parts of the district. The emerging hot spots were in areas that had undergone landscape changes due to urbanization. Such areas are found between the persistent hot spots (western parts of the district) and persistent cold spots (eastern parts of the district). Generally, the spatial pattern of the emerging hot spots followed the pattern of urbanization in the district, which had been expanding from west to east. Overall, the findings of this study could be used as a reference in the context of sustainable landscape and urban planning for the Colombo District.

Suggested Citation

  • Manjula Ranagalage & Ronald C. Estoque & Xinmin Zhang & Yuji Murayama, 2018. "Spatial Changes of Urban Heat Island Formation in the Colombo District, Sri Lanka: Implications for Sustainability Planning," Sustainability, MDPI, vol. 10(5), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1367-:d:143628
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/5/1367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/5/1367/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:asg:wpaper:1039 is not listed on IDEAS
    2. Rauner, Sebastian & Eichhorn, Marcus & Thrän, Daniela, 2016. "The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision," Applied Energy, Elsevier, vol. 184(C), pages 1038-1050.
    3. Li, Zhengpeng & Liu, Shuguang & Zhang, Xuesong & West, Tristram O. & Ogle, Stephen M. & Zhou, Naijun, 2016. "Evaluating land cover influences on model uncertainties—A case study of cropland carbon dynamics in the Mid-Continent Intensive Campaign region," Ecological Modelling, Elsevier, vol. 337(C), pages 176-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. DMSLB Dissanayake & Takehiro Morimoto & Yuji Murayama & Manjula Ranagalage, 2019. "Impact of Landscape Structure on the Variation of Land Surface Temperature in Sub-Saharan Region: A Case Study of Addis Ababa using Landsat Data (1986–2016)," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    2. Younes Delhoum & Rachid Belaroussi & Francis Dupin & Mahdi Zargayouna, 2020. "Activity-Based Demand Modeling for a Future Urban District," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    3. Lan, Hai & Zheng, Puyang & Li, Zheng, 2021. "Constructing urban sprawl measurement system of the Yangtze River economic belt zone for healthier lives and social changes in sustainable cities," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    4. Manjula Ranagalage & Yuji Murayama & DMSLB Dissanayake & Matamyo Simwanda, 2019. "The Impacts of Landscape Changes on Annual Mean Land Surface Temperature in the Tropical Mountain City of Sri Lanka: A Case Study of Nuwara Eliya (1996–2017)," Sustainability, MDPI, vol. 11(19), pages 1-26, October.
    5. DMSLB Dissanayake & Takehiro Morimoto & Yuji Murayama & Manjula Ranagalage & Hepi H. Handayani, 2018. "Impact of Urban Surface Characteristics and Socio-Economic Variables on the Spatial Variation of Land Surface Temperature in Lagos City, Nigeria," Sustainability, MDPI, vol. 11(1), pages 1-23, December.
    6. Zi-Ce Ma & Peng Sun & Qiang Zhang & Yu-Qian Hu & Wei Jiang, 2021. "Characterization and Evaluation of MODIS-Derived Crop Water Stress Index (CWSI) for Monitoring Drought from 2001 to 2017 over Inner Mongolia," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    7. Manjula Ranagalage & Ronald C. Estoque & Hepi H. Handayani & Xinmin Zhang & Takehiro Morimoto & Takeo Tadono & Yuji Murayama, 2018. "Relation between Urban Volume and Land Surface Temperature: A Comparative Study of Planned and Traditional Cities in Japan," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    8. Iman Rousta & Md Omar Sarif & Rajan Dev Gupta & Haraldur Olafsson & Manjula Ranagalage & Yuji Murayama & Hao Zhang & Terence Darlington Mushore, 2018. "Spatiotemporal Analysis of Land Use/Land Cover and Its Effects on Surface Urban Heat Island Using Landsat Data: A Case Study of Metropolitan City Tehran (1988–2018)," Sustainability, MDPI, vol. 10(12), pages 1-25, November.
    9. Yashar Jamei & Mehdi Seyedmahmoudian & Elmira Jamei & Ben Horan & Saad Mekhilef & Alex Stojcevski, 2022. "Investigating the Relationship between Land Use/Land Cover Change and Land Surface Temperature Using Google Earth Engine; Case Study: Melbourne, Australia," Sustainability, MDPI, vol. 14(22), pages 1-34, November.
    10. Muhammad Sajid Mehmood & Zeeshan Zafar & Muhammad Sajjad & Sadam Hussain & Shiyan Zhai & Yaochen Qin, 2022. "Time Series Analyses and Forecasting of Surface Urban Heat Island Intensity Using ARIMA Model in Punjab, Pakistan," Land, MDPI, vol. 12(1), pages 1-20, December.
    11. Xiaoli Jia & Peihao Song & Guoliang Yun & Ang Li & Kun Wang & Kaihua Zhang & Chenyu Du & Yuan Feng & Kexin Qu & Meng Wu & Shidong Ge, 2022. "Effect of Landscape Structure on Land Surface Temperature in Different Essential Urban Land Use Categories: A Case Study in Jiaozuo, China," Land, MDPI, vol. 11(10), pages 1-18, September.
    12. Paul Eduardo Vásquez-Álvarez & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & Sandra Lucía Cobos-Mora, 2022. "Urban Heat Island Mitigation through Planned Simulation," Sustainability, MDPI, vol. 14(14), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reinhold Lehneis & Daniela Thrän, 2024. "In 50 Shades of Orange: Germany’s Photovoltaic Power Generation Landscape," Energies, MDPI, vol. 17(16), pages 1-12, August.
    2. Mohammadi, Neda & Taylor, John E., 2017. "Urban energy flux: Spatiotemporal fluctuations of building energy consumption and human mobility-driven prediction," Applied Energy, Elsevier, vol. 195(C), pages 810-818.
    3. Marcus Eichhorn & Mattes Scheftelowitz & Matthias Reichmuth & Christian Lorenz & Kyriakos Louca & Alexander Schiffler & Rita Keuneke & Martin Bauschmann & Jens Ponitka & David Manske & Daniela Thrän, 2019. "Spatial Distribution of Wind Turbines, Photovoltaic Field Systems, Bioenergy, and River Hydro Power Plants in Germany," Data, MDPI, vol. 4(1), pages 1-15, February.
    4. Becker, Raik & Thrän, Daniela, 2017. "Completion of wind turbine data sets for wind integration studies applying random forests and k-nearest neighbors," Applied Energy, Elsevier, vol. 208(C), pages 252-262.
    5. Reinhold Lehneis & Daniela Thrän, 2023. "Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany," Energies, MDPI, vol. 16(7), pages 1-16, April.
    6. Wang, Ni & Verzijlbergh, Remco A. & Heijnen, Petra W. & Herder, Paulien M., 2020. "A spatially explicit planning approach for power systems with a high share of renewable energy sources," Applied Energy, Elsevier, vol. 260(C).
    7. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    8. Zappa, William & van den Broek, Machteld, 2018. "Analysing the potential of integrating wind and solar power in Europe using spatial optimisation under various scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1192-1216.
    9. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    10. Eichhorn, Marcus & Tafarte, Philip & Thrän, Daniela, 2017. "Towards energy landscapes – “Pathfinder for sustainable wind power locations”," Energy, Elsevier, vol. 134(C), pages 611-621.
    11. Bauknecht, Dierk & Funcke, Simon & Vogel, Moritz, 2020. "Is small beautiful? A framework for assessing decentralised electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1367-:d:143628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.