IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11517-d1202272.html
   My bibliography  Save this article

Potential Analysis and Optimal Management of Winter Electric Heating in Rural China Based on V2H Technology

Author

Listed:
  • Xinjia Gao

    (School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
    School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Ran Li

    (School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China)

  • Siqi Chen

    (School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

  • Yalun Li

    (School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China)

Abstract

In order to improve the air pollution problem in northern China in winter, coal-to-electricity (CtE) projects are being vigorously implemented. Although the CtE project has a positive effect on alleviating air pollution and accelerating clean energy development, the economic benefits of electric heating are currently poor. In this study, a system based on vehicle-to-home (V2H) and photovoltaic power generation that can effectively improve the benefits of CtE projects is proposed. First, a V2H-based village microgrid is proposed. The winter temperature and direct radiation of the Beijing CtE project area are analyzed. Extreme operating conditions and typical operating conditions are constructed for potential analysis. After that, a bi-layer optimization model for energy management considering travel characteristics is proposed. The upper layer is a village-level microgrid energy-dispatching model considering meeting the heating load demand, and the lower layer is a multi-vehicle energy distribution model considering the battery degradation. The results show that the distribution grid expansion capacity of the electric heating system based on V2H and PV generation is reduced by 45.9%, and the residents’ electricity bills are reduced by 68.5%. The consumption of PV can be completed. This study has effectively increased the benefits of electric heating in northern China during winter. This helps the CtE project to be further promoted without leading to large subsidies from the government and the State Grid.

Suggested Citation

  • Xinjia Gao & Ran Li & Siqi Chen & Yalun Li, 2023. "Potential Analysis and Optimal Management of Winter Electric Heating in Rural China Based on V2H Technology," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11517-:d:1202272
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11517/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11517/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zesen Wang & Yanmei Tang & Xiao Chen & Xiangyang Men & Jun Cao & Haifeng Wang, 2018. "Optimized Daily Dispatching Strategy of Building- Integrated Energy Systems Considering Vehicle to Grid Technology and Room Temperature Control," Energies, MDPI, vol. 11(5), pages 1-19, May.
    2. Yang, Zaoli & Li, Qin & Yan, Yamin & Shang, Wen-Long & Ochieng, Washington, 2022. "Examining influence factors of Chinese electric vehicle market demand based on online reviews under moderating effect of subsidy policy," Applied Energy, Elsevier, vol. 326(C).
    3. Fossati, Juan P. & Galarza, Ainhoa & Martín-Villate, Ander & Fontán, Luis, 2015. "A method for optimal sizing energy storage systems for microgrids," Renewable Energy, Elsevier, vol. 77(C), pages 539-549.
    4. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    5. Cardoso, Gonçalo & Brouhard, Thomas & DeForest, Nicholas & Wang, Dai & Heleno, Miguel & Kotzur, Leander, 2018. "Battery aging in multi-energy microgrid design using mixed integer linear programming," Applied Energy, Elsevier, vol. 231(C), pages 1059-1069.
    6. Yimeng Du & Teng Ma, 2022. "Impact of electricity pricing strategy on residential energy consumption decisions in China: empirical evidence from a household survey," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 11(2), pages 154-171, April.
    7. Nogueira, Carlos Eduardo Camargo & Vidotto, Magno Luiz & Niedzialkoski, Rosana Krauss & de Souza, Samuel Nelson Melegari & Chaves, Luiz Inácio & Edwiges, Thiago & Santos, Darlisson Bentes dos & Wernck, 2014. "Sizing and simulation of a photovoltaic-wind energy system using batteries, applied for a small rural property located in the south of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 151-157.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwanghun Chung & Jong-Hyun Ryu, 2024. "Economic Value Assessment of Vehicle-to-Home (V2H) Operation under Various Environmental Conditions," Energies, MDPI, vol. 17(15), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sachs, Julia & Sawodny, Oliver, 2016. "Multi-objective three stage design optimization for island microgrids," Applied Energy, Elsevier, vol. 165(C), pages 789-800.
    2. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    3. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    4. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    5. Hai Lan & Jinfeng Dai & Shuli Wen & Ying-Yi Hong & David C. Yu & Yifei Bai, 2015. "Optimal Tilt Angle of Photovoltaic Arrays and Economic Allocation of Energy Storage System on Large Oil Tanker Ship," Energies, MDPI, vol. 8(10), pages 1-16, October.
    6. Ana Rita Silva & Ana Estanqueiro, 2022. "From Wind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants," Energies, MDPI, vol. 15(7), pages 1-19, April.
    7. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Cohen, Miri Weiss & Reis, Agnaldo J.R. & Silva, Sidelmo M. & Souza, Marcone J.F. & Fleming, Peter J. & Guimarães, Frederico G., 2016. "Multi-objective energy storage power dispatching using plug-in vehicles in a smart-microgrid," Renewable Energy, Elsevier, vol. 89(C), pages 730-742.
    8. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    9. Wen, Shuli & Lan, Hai & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun & Cheng, Peng, 2016. "Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system," Applied Energy, Elsevier, vol. 175(C), pages 158-167.
    10. Shang, Yuwei & Wu, Wenchuan & Guo, Jianbo & Ma, Zhao & Sheng, Wanxing & Lv, Zhe & Fu, Chenran, 2020. "Stochastic dispatch of energy storage in microgrids: An augmented reinforcement learning approach," Applied Energy, Elsevier, vol. 261(C).
    11. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    12. Monica Arnaudo & Monika Topel & Björn Laumert, 2020. "Vehicle-To-Grid for Peak Shaving to Unlock the Integration of Distributed Heat Pumps in a Swedish Neighborhood," Energies, MDPI, vol. 13(7), pages 1-13, April.
    13. Chen, Cong & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "Two-stage robust planning-operation co-optimization of energy hub considering precise energy storage economic model," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    15. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    16. Erick Alves & Santiago Sanchez & Danilo Brandao & Elisabetta Tedeschi, 2019. "Smart Load Management with Energy Storage for Power Quality Enhancement in Wind-Powered Oil and Gas Applications," Energies, MDPI, vol. 12(15), pages 1-15, August.
    17. Li, Yanbin & Wang, Jiani & Wang, Weiye & Liu, Chang & Li, Yun, 2023. "Dynamic pricing based electric vehicle charging station location strategy using reinforcement learning," Energy, Elsevier, vol. 281(C).
    18. Bruno Pinto & Filipe Barata & Constantino Soares & Carla Viveiros, 2020. "Fleet Transition from Combustion to Electric Vehicles: A Case Study in a Portuguese Business Campus," Energies, MDPI, vol. 13(5), pages 1-24, March.
    19. Alain Aoun & Hussein Ibrahim & Mazen Ghandour & Adrian Ilinca, 2019. "Supply Side Management vs. Demand Side Management of a Residential Microgrid Equipped with an Electric Vehicle in a Dual Tariff Scheme," Energies, MDPI, vol. 12(22), pages 1-21, November.
    20. Bilir, Levent & Yildirim, Nurdan, 2018. "Modeling and performance analysis of a hybrid system for a residential application," Energy, Elsevier, vol. 163(C), pages 555-569.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11517-:d:1202272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.