Author
Listed:
- Hyomun Lee
(Department of Architecture Engineering, Hanbat National University, Daejeon 34158, Republic of Korea)
- Tien Nhat Tran
(Department of Architecture Engineering, Hanbat National University, Daejeon 34158, Republic of Korea)
- Ruda Lee
(Department of Architecture Engineering, Hanbat National University, Daejeon 34158, Republic of Korea)
- Dongsu Kim
(Department of Architecture Engineering, Hanbat National University, Daejeon 34158, Republic of Korea)
- Hyunkyu Choi
(Metropolitan Architecture of Choi and Kang, Sejong-si 30127, Republic of Korea)
- Jongho Yoon
(Department of Architecture Engineering, Hanbat National University, Daejeon 34158, Republic of Korea)
Abstract
The performance of facade-applied photovoltaic (FPV) systems in high-rise apartment complexes varies based on the height and layout of the buildings, influencing the overall energy efficiency of the complex. This study assesses the potential of FPV systems to achieve electricity self-sufficiency in apartment complexes. Focusing on a single apartment complex in Seoul, South Korea, the geometry and layout of each building are used to estimate electricity consumption and assess the impact of FPV systems. The electricity consumption of the apartment complex was estimated based on the electricity energy use intensity derived from the analysis of public data and the gross floor area of the apartment complex, yielding an annual electricity consumption of 1803.7 MWh. Two types of photovoltaic (PV) systems were considered: rooftop-mounted photovoltaic (RFPV) systems and FPV systems installed on the south-facing facades of buildings. Three FPV design scenarios were examined (Scenario A: full facade coverage; Scenario B: horizontal-only installation; Scenario C: vertical-only installation), with no design variations for the RFPV system. The RFPV system was estimated to contribute 30.7% (553.8 MWh/yr) of the complex’s electricity consumption. The remaining electricity consumption, 1249.9 MWh/yr, is met by the FPV systems, with self-sufficiency rates under the three FPV design scenarios found to be 83.3% for Scenario A, 33.6% for Scenario B, and 64.6% for Scenario C. These findings highlight the need for additional PV installations or the incorporation of other renewable energy technologies to achieve full electricity self-sufficiency. This study provides a foundational model for applying PV systems to high-rise apartment complexes, offering insights for further research and real-world implementation.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:541-:d:1576144. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.