IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2804-d162520.html
   My bibliography  Save this article

A Practical Approach to Reduce Greenhouse Gas Emissions from Open Dumps through Infrastructure Restructuring: A Case Study in Nanjing City, China

Author

Listed:
  • Jing Ma

    (Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, China)

  • Zhanbin Luo

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221043, China)

  • Fu Chen

    (Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, China
    School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221043, China
    Geospatial Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Australia)

  • Qianlin Zhu

    (Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, China)

  • Shaoliang Zhang

    (School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221043, China)

  • Gang-Jun Liu

    (Geospatial Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Australia)

Abstract

A new environmental ban has forced the restructure of open dumps in China since 1 July 2011. A technical process was established in this study that is feasible for the upgrade of open dumps through restructuring. The feasibility of restructuring and the benefit of greenhouse gas emission reductions were assessed according to field surveys of five landfills and four dumps in Nanjing. The results showed that the daily processing capacities of the existing landfills have been unable to meet the growth of municipal solid waste (MSW), making restructuring of the landfills imperative. According to an assessment of the technical process, only four sites in Nanjing were suitable for upgrading. Restructuring the Jiaozishan landfill effectively reduced the leachate generation rate by 5.84% under its scale when expanded by 60.7% in 2015. CO 2 emissions were reduced by approximately 55,000–86,000 tons per year, in which biogas power generation replaced fossil fuels Fossil fuels accounted for the largest proportion, up to 45,000–60,000 tons. Photovoltaic power generation on the overlying land has not only reduced CO 2 emissions to 26,000–30,000 tons per year but has also brought in continuing income from the sale of electricity. The funds are essential for developing countries such as China, which lack long-term financial support for landfill management after closure.

Suggested Citation

  • Jing Ma & Zhanbin Luo & Fu Chen & Qianlin Zhu & Shaoliang Zhang & Gang-Jun Liu, 2018. "A Practical Approach to Reduce Greenhouse Gas Emissions from Open Dumps through Infrastructure Restructuring: A Case Study in Nanjing City, China," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2804-:d:162520
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2804/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2804/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zuberi, M. Jibran S. & Ali, Shazia F., 2015. "Greenhouse effect reduction by recovering energy from waste landfills in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 117-131.
    2. Johari, Anwar & Ahmed, Saeed Isa & Hashim, Haslenda & Alkali, Habib & Ramli, Mat, 2012. "Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2907-2912.
    3. Alan K. Reichert & Michael Small & Sunil Mohanty, 1992. "The Impact of Landfills on Residential Property Values," Journal of Real Estate Research, American Real Estate Society, vol. 7(3), pages 297-314.
    4. Hongyun Han & Zhijian Zhang & Sheng Xia, 2016. "The Crowding-Out Effects of Garbage Fees and Voluntary Source Separation Programs on Waste Reduction: Evidence from China," Sustainability, MDPI, vol. 8(7), pages 1-17, July.
    5. Daniel Hoornweg & Perinaz Bhada-Tata & Chris Kennedy, 2013. "Environment: Waste production must peak this century," Nature, Nature, vol. 502(7473), pages 615-617, October.
    6. Tan, Sie Ting & Hashim, Haslenda & Lim, Jeng Shiun & Ho, Wai Shin & Lee, Chew Tin & Yan, Jinyue, 2014. "Energy and emissions benefits of renewable energy derived from municipal solid waste: Analysis of a low carbon scenario in Malaysia," Applied Energy, Elsevier, vol. 136(C), pages 797-804.
    7. Fu Chen & Xiaoxiao Li & Jing Ma & Yongjun Yang & Gang-Jun Liu, 2018. "An Exploration of the Impacts of Compulsory Source-Separated Policy in Improving Household Solid Waste-Sorting in Pilot Megacities, China: A Case Study of Nanjing," Sustainability, MDPI, vol. 10(5), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Tian & Bo Pu & Yini Chen & Zhian Zhu, 2019. "Consumer’s Waste Classification Intention in China: An Extended Theory of Planned Behavior Model," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    2. Ahmad Nadim Azimi & Sébastien M. R. Dente & Seiji Hashimoto, 2020. "Social Life-Cycle Assessment of Household Waste Management System in Kabul City," Sustainability, MDPI, vol. 12(8), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu Chen & Xiaoxiao Li & Jing Ma & Yongjun Yang & Gang-Jun Liu, 2018. "An Exploration of the Impacts of Compulsory Source-Separated Policy in Improving Household Solid Waste-Sorting in Pilot Megacities, China: A Case Study of Nanjing," Sustainability, MDPI, vol. 10(5), pages 1-14, April.
    2. Ihsanullah Sohoo & Marco Ritzkowski & Zubair Ahmed Sohu & Senem Önen Cinar & Zhi Kai Chong & Kerstin Kuchta, 2021. "Estimation of Methane Production and Electrical Energy Generation from Municipal Solid Waste Disposal Sites in Pakistan," Energies, MDPI, vol. 14(9), pages 1-17, April.
    3. Islam, K.M. Nazmul, 2018. "Municipal solid waste to energy generation: An approach for enhancing climate co-benefits in the urban areas of Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2472-2486.
    4. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Alao, M.A., 2017. "Life cycle assessment of waste-to-energy (WtE) technologies for electricity generation using municipal solid waste in Nigeria," Applied Energy, Elsevier, vol. 201(C), pages 200-218.
    5. Sai Ge & Jun Ma & Lei Liu & Zhiming Yuan, 2020. "The Impact of Exogenous Aerobic Bacteria on Sustainable Methane Production Associated with Municipal Solid Waste Biodegradation: Revealed by High-Throughput Sequencing," Sustainability, MDPI, vol. 12(5), pages 1-11, February.
    6. Zhao, Rui & Xi, Beidou & Liu, Yiyun & Su, Jing & Liu, Silin, 2017. "Economic potential of leachate evaporation by using landfill gas: A system dynamics approach," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 74-84.
    7. Dastjerdi, B. & Strezov, V. & Kumar, R. & Behnia, M., 2019. "An evaluation of the potential of waste to energy technologies for residual solid waste in New South Wales, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Fu Chen & Xiaoxiao Li & Yongjun Yang & Huping Hou & Gang-Jun Liu & Shaoliang Zhang, 2019. "Storing E-waste in Green Infrastructure to Reduce Perceived Value Loss through Landfill Siting and Landscaping: A Case Study in Nanjing, China," Sustainability, MDPI, vol. 11(7), pages 1-15, March.
    9. repec:zib:zjmerd:3jmerd2018-97-101 is not listed on IDEAS
    10. Meihui Li & Na Luo & Yi Lu, 2017. "Biomass Energy Technological Paradigm (BETP): Trends in This Sector," Sustainability, MDPI, vol. 9(4), pages 1-28, April.
    11. Oh, Tick Hui & Hasanuzzaman, Md & Selvaraj, Jeyraj & Teo, Siew Chein & Chua, Shing Chyi, 2018. "Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth – An update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3021-3031.
    12. AM. Faizal & A. Amirah & Y. H. Tan, 2018. "Energy, Economic And Environmental Impact Of Waste-To-Energy In Malaysia," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 41(3), pages 97-101, September.
    13. Lichi Zhang & Yanyan Jiang & Junmin Wu, 2022. "Evolutionary Game Analysis of Government and Residents’ Participation in Waste Separation Based on Cumulative Prospect Theory," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    14. David M. Brasington & Diane Hite, 2005. "Demand for Environmental Quality: A Spatial Hedonic Approach," Departmental Working Papers 2005-08, Department of Economics, Louisiana State University.
    15. Francesca Nocca & Martina Bosone & Manuel Orabona, 2024. "Multicriteria Evaluation Framework for Industrial Heritage Adaptive Reuse: The Role of the ‘Intrinsic Value’," Land, MDPI, vol. 13(8), pages 1-26, August.
    16. Carmen van der Merwe & Martin de Wit, 2021. "An In-Depth Investigation into the Relationship Between Municipal Solid Waste Generation and Economic Growth in the City of Cape Town," Working Papers 07/2021, Stellenbosch University, Department of Economics, revised 2021.
    17. Rui Zhao & Tao Huang & Michael McGuire, 2012. "From a Literature Review to an Alternative Treatment System for Landfill Gas and Leachate," Challenges, MDPI, vol. 3(2), pages 1-12, December.
    18. Alessandro De Matteis & Fethiye Burcu Turkmen Ceylan & Mona Daoud & Anne Kahuthu, 2022. "A systemic approach to tackling ocean plastic debris," Environment Systems and Decisions, Springer, vol. 42(1), pages 136-145, March.
    19. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Joshi, Kapil & Sharma, Vinay & Mittal, Sukrit, 2015. "Social entrepreneurship through forest bioresidue briquetting: An approach to mitigate forest fires in Pine areas of Western Himalaya, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1338-1344.
    21. Roy, S. & Lam, Y.F. & Hossain, M.U. & Chan, J.C.L., 2022. "Comprehensive evaluation of electricity generation and emission reduction potential in the power sector using renewable alternatives in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2804-:d:162520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.