IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2767-d162080.html
   My bibliography  Save this article

On Decision Makers’ Perceptions of What an Ecological Computer Model is, What It Does, and Its Impact on Limiting Model Acceptance

Author

Listed:
  • Fabio Boschetti

    (CSIRO Oceans & Atmosphere, Perth WA 6907, Australia
    School of Earth and Geographical Sciences, The University of Western Australia, Crawley WA 6009, Australia)

  • Michael Hughes

    (School of Veterinary and Life Sciences, Environmental and Conservation Sciences, Murdoch University, Murdoch WA 6150, Australia)

  • Cheryl Jones

    (School of Education, Murdoch University, Murdoch WA 6150, Australia)

  • Hector Lozano-Montes

    (CSIRO Oceans & Atmosphere, Perth WA 6907, Australia)

Abstract

Environmental decision makers are required to understand complex ecological processes and ecological computer models are designed to facilitate this understanding. A set of interviews reveals three main perceptions affecting senior environmental decision makers’ trust in ecological computer models as decision facilitation tools: an ecological computer model is perceived as (i) a ‘black box’, (ii) processing poorly documented, sparse and out-of-date input data, and (iii) whose sensitivity to model parameters enables manipulation to produce desired outcomes justifying pre-conceived decisions. This leads to lack of trust towards both ecological computer models and model-users, including other scientists and decision makers. Model acceptance appears to depend on the amount, currency and geographical origin of input data. This is at odds with modellers’ communication style, which typically places more emphasis on highlighting the ecological computer model’s features and performance, rather than on describing the input data. Developing ‘big data’ capabilities could deliver the large, real-time, local data that may enhance acceptance. However, the size and complexity of ‘big data’ requires automated pre-processing, using modelling and algorithms that are even more inscrutable than current ecological computer models. Future trust in ecological computer models will likely depend on how this dilemma is resolved, which is likely to require improved communication between modellers and decision makers.

Suggested Citation

  • Fabio Boschetti & Michael Hughes & Cheryl Jones & Hector Lozano-Montes, 2018. "On Decision Makers’ Perceptions of What an Ecological Computer Model is, What It Does, and Its Impact on Limiting Model Acceptance," Sustainability, MDPI, vol. 10(8), pages 1-10, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2767-:d:162080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Coro, Gianpaolo & Vilas, Luis Gonzalez & Magliozzi, Chiara & Ellenbroek, Anton & Scarponi, Paolo & Pagano, Pasquale, 2018. "Forecasting the ongoing invasion of Lagocephalus sceleratus in the Mediterranean Sea," Ecological Modelling, Elsevier, vol. 371(C), pages 37-49.
    2. Boschetti, Fabio & Richert, Claire & Walker, Iain & Price, Jennifer & Dutra, Leo, 2012. "Assessing attitudes and cognitive styles of stakeholders in environmental projects involving computer modelling," Ecological Modelling, Elsevier, vol. 247(C), pages 98-111.
    3. Steenbeek, Jeroen & Buszowski, Joe & Christensen, Villy & Akoglu, Ekin & Aydin, Kerim & Ellis, Nick & Felinto, Dalai & Guitton, Jerome & Lucey, Sean & Kearney, Kelly & Mackinson, Steven & Pan, Mike & , 2016. "Ecopath with Ecosim as a model-building toolbox: Source code capabilities, extensions, and variations," Ecological Modelling, Elsevier, vol. 319(C), pages 178-189.
    4. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Iturriza & Josune Hernantes & Leire Labaka, 2019. "Coming to Action: Operationalizing City Resilience," Sustainability, MDPI, vol. 11(11), pages 1-18, May.
    2. Ksenija Lalović & Jelena Živković & Uroš Radosavljević & Zoran Đukanović, 2019. "An Integral Approach to the Modeling of Information Support for Local Sustainable Development—Experiences of a Serbian Enabling Leadership Experiment," Sustainability, MDPI, vol. 11(9), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    2. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    3. Woodstock, Matthew S. & Sutton, Tracey T. & Frank, Tamara & Zhang, Yuying, 2021. "An early warning sign: trophic structure changes in the oceanic Gulf of Mexico from 2011—2018," Ecological Modelling, Elsevier, vol. 445(C).
    4. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    5. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    6. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    7. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    8. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    9. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    10. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    11. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    12. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    13. Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
    14. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    15. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    16. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
    17. Fenintsoa Andriamasinoro & Raphael Danino-Perraud, 2021. "Use of artificial intelligence to assess mineral substance criticality in the French market: the example of cobalt," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 19-37, April.
    18. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    19. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    20. Bauduin, Sarah & Grente, Oksana & Santostasi, Nina Luisa & Ciucci, Paolo & Duchamp, Christophe & Gimenez, Olivier, 2020. "An individual-based model to explore the impacts of lesser-known social dynamics on wolf populations," Ecological Modelling, Elsevier, vol. 433(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2767-:d:162080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.