IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2754-d161907.html
   My bibliography  Save this article

Possible Impact of Long and Heavy Vehicles in the United Kingdom—A Commodity Level Approach

Author

Listed:
  • Heikki Liimatainen

    (Transport Research Centre Verne, Tampere University of Technology, Tampere 33720, Finland)

  • Phil Greening

    (Centre for Sustainable Road Freight, Heriot-Watt University, Edinburgh EH14 4AS, UK)

  • Pratyush Dadhich

    (Centre for Sustainable Road Freight, Heriot-Watt University, Edinburgh EH14 4AS, UK)

  • Anna Keyes

    (Centre for Sustainable Road Freight, Heriot-Watt University, Edinburgh EH14 4AS, UK)

Abstract

The potential effects of implementing longer and heavier vehicles (LHVs) in road freight transport have been studied in various countries, nationally and internationally, in Europe. These studies have focused on the implementation of LHVs on certain types of commodities and the experience from countries like Finland and Sweden, which have a long tradition of using LHVs, and in which LHVs used for all types of commodities have not been widely utilised. This study aimed to assess the impacts of long and heavy vehicles on various commodities in the United Kingdom based on the Finnish experiences in order to estimate the possible savings in road freight transport vehicle kilometres, costs, and CO 2 emissions in the United Kingdom if LHVs would be introduced and used similarly to in Finland in the transport of various commodities. The study shows that the savings of introducing longer and heavier vehicles in the United Kingdom would be 1.5–2.6 billion vehicle kms, £0.7–1.5 billion in transport costs, and 0.35–0.72 Mt in CO 2 emissions. These findings are well in line with previous findings in other countries. The results confirm that considerable savings in traffic volume and emissions can be achieved and the savings are very likely to outweigh possible effects of modal shift from rail to road.

Suggested Citation

  • Heikki Liimatainen & Phil Greening & Pratyush Dadhich & Anna Keyes, 2018. "Possible Impact of Long and Heavy Vehicles in the United Kingdom—A Commodity Level Approach," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2754-:d:161907
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2754/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2754/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rickard Bergqvist & Sönke Behrends, 2011. "Assessing the Effects of Longer Vehicles: The Case of Pre- and Post-haulage in Intermodal Transport Chains," Transport Reviews, Taylor & Francis Journals, vol. 31(5), pages 591-602.
    2. A. Ortega & J.M. Vassallo & A.F. Guzmán & P.J. Pérez-Martínez, 2014. "Are Longer and Heavier Vehicles (LHVs) Beneficial for Society? A Cost Benefit Analysis to Evaluate their Potential Implementation in Spain," Transport Reviews, Taylor & Francis Journals, vol. 34(2), pages 150-168, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Ziółkowski & Paweł Fuć & Aleks Jagielski & Maciej Bednarek, 2022. "Analysis of Emissions and Fuel Consumption in Freight Transport," Energies, MDPI, vol. 15(13), pages 1-14, June.
    2. Gunawan, Tubagus Aryandi & Monaghan, Rory F.D., 2022. "Techno-econo-environmental comparisons of zero- and low-emission heavy-duty trucks," Applied Energy, Elsevier, vol. 308(C).
    3. Andrzej Ziółkowski & Paweł Fuć & Piotr Lijewski & Aleks Jagielski & Maciej Bednarek & Władysław Kusiak, 2022. "Analysis of Exhaust Emissions from Heavy-Duty Vehicles on Different Applications," Energies, MDPI, vol. 15(21), pages 1-21, October.
    4. Ahmed Karam & Kristian Hegner Reinau, 2021. "Evaluating the Effects of the A-Double Vehicle Combinations If Introduced to a Line-Haul Freight Transport Network," Sustainability, MDPI, vol. 13(15), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castillo-Manzano, José I. & Castro-Nuño, Mercedes & Fageda, Xavier, 2016. "Exploring the relationship between truck load capacity and traffic accidents in the European Union," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 94-109.
    2. Gohari, Adel & Ahmad, Anuar Bin & Balasbaneh, Ali Tighnavard & Gohari, Ali & Hasan, Razi & Sholagberu, Abdulkadir Taofeeq, 2022. "Significance of intermodal freight modal choice criteria: MCDM-based decision support models and SP-based modal shift policies," Transport Policy, Elsevier, vol. 121(C), pages 46-60.
    3. Behrends, Sönke, 2017. "Burden or opportunity for modal shift? – Embracing the urban dimension of intermodal road-rail transport," Transport Policy, Elsevier, vol. 59(C), pages 10-16.
    4. Gonzalez-Aregall, Marta & Bergqvist, Rickard, 2019. "The role of dry ports in solving seaport disruptions: A Swedish case study," Journal of Transport Geography, Elsevier, vol. 80(C).
    5. Inge Vierth & Samuel Lindgren & Hanna Lindgren, 2018. "Vehicle Weight, Modal Split, and Emissions—An Ex-Post Analysis for Sweden," Sustainability, MDPI, vol. 10(6), pages 1-15, May.
    6. De Borger, Bruno & Mulalic, Ismir, 2012. "The determinants of fuel use in the trucking industry—volume, fleet characteristics and the rebound effect," Transport Policy, Elsevier, vol. 24(C), pages 284-295.
    7. Jiang, Jinyu & Yang, Zhongzhen, 2024. "Study on the truck axle load limit for rural roads based on the cost of the concerned entities in China," Transport Policy, Elsevier, vol. 145(C), pages 187-198.
    8. Ahmed Karam & Kristian Hegner Reinau, 2021. "Evaluating the Effects of the A-Double Vehicle Combinations If Introduced to a Line-Haul Freight Transport Network," Sustainability, MDPI, vol. 13(15), pages 1-16, August.
    9. Talebian, Masoud & Savelsbergh, Martin & Moffiet, Chad, 2016. "A new rail access charging policy: Hunter Valley coal chain case study," Transport Policy, Elsevier, vol. 46(C), pages 101-108.
    10. Mercedes Castro-Nuño & José I. Castillo-Manzano & Xavier Fageda, 2015. "Do more trucks lead to more motor vehicle fatalities in European roads? Evaluating the impact of specific safety strategies," ERSA conference papers ersa15p306, European Regional Science Association.
    11. Monios, Jason & Bergqvist, Rickard, 2019. "The transport geography of electric and autonomous vehicles in road freight networks," Journal of Transport Geography, Elsevier, vol. 80(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2754-:d:161907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.