IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2494-d158313.html
   My bibliography  Save this article

Evaluating the Energy Consumption of Mobile Data Transfer—From Technology Development to Consumer Behaviour and Life Cycle Thinking

Author

Listed:
  • Hanna Pihkola

    (VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland)

  • Mikko Hongisto

    (VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland)

  • Olli Apilo

    (VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland)

  • Mika Lasanen

    (VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland)

Abstract

Mobile data consumption in Finland is among the highest in the world. The increase in mobile data usage has been rapid and continual future growth is foreseen. Simultaneously, consumer behaviour is changing. While new end-user devices are more and more energy-efficient and energy consumption per transferred gigabyte has significantly decreased, people spend more time and consume more data via their mobile devices than ever before. Does the increased usage outweigh the energy savings that have been achieved? What options are available for tackling increasing energy demand? And should consumers have a role to play in this discussion? This paper examines the current and future trends that results from the energy consumption of mobile data transfer and mobile networks in Finland. The findings presented in this paper are based on a top-down energy intensity estimate and publicly available data, which was employed to construct an illustrative trend (kWh/gigabyte) for the energy consumption of transmitted mobile data for the years 2010–2017. In addition, energy consumption related to mobile data transfer is discussed from a life cycle perspective, considering both direct and indirect energy use. Finally, the challenges in conducting such assessments are examined.

Suggested Citation

  • Hanna Pihkola & Mikko Hongisto & Olli Apilo & Mika Lasanen, 2018. "Evaluating the Energy Consumption of Mobile Data Transfer—From Technology Development to Consumer Behaviour and Life Cycle Thinking," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2494-:d:158313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2494/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2494/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Esther Müller & Rolf Widmer & Vlad C. Coroama & Amélie Orthlieb, 2013. "Material and Energy Flows and Environmental Impacts of the Internet in Switzerland," Journal of Industrial Ecology, Yale University, vol. 17(6), pages 814-826, December.
    2. Daniel Schien & Paul Shabajee & Mike Yearworth & Chris Preist, 2013. "Modeling and Assessing Variability in Energy Consumption During the Use Stage of Online Multimedia Services," Journal of Industrial Ecology, Yale University, vol. 17(6), pages 800-813, December.
    3. Anders S. G. Andrae & Tomas Edler, 2015. "On Global Electricity Usage of Communication Technology: Trends to 2030," Challenges, MDPI, vol. 6(1), pages 1-41, April.
    4. Vlad C. Coroama & Lorenz M. Hilty & Ernst Heiri & Frank M. Horn, 2013. "The Direct Energy Demand of Internet Data Flows," Journal of Industrial Ecology, Yale University, vol. 17(5), pages 680-688, October.
    5. Jens Malmodin & Dag Lundén & Åsa Moberg & Greger Andersson & Mikael Nilsson, 2014. "Life Cycle Assessment of ICT," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 829-845, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nelly Condori-Fernandez & Patricia Lago & Miguel R. Luaces & Ángeles S. Places, 2020. "An Action Research for Improving the Sustainability Assessment Framework Instruments," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    2. Zagdanski, Jakub & Castells, Pau, 2023. "The impact of spectrum policy on carbon emissions," 32nd European Regional ITS Conference, Madrid 2023: Realising the digital decade in the European Union – Easier said than done? 278024, International Telecommunications Society (ITS).
    3. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    4. Oughton, Edward & Geraci, Giovanni & Polese, Michele & Shah, Vijay & Bubley, Dean & Blue, Scott, 2024. "Reviewing wireless broadband technologies in the peak smartphone era: 6G versus Wi-Fi 7 and 8," Telecommunications Policy, Elsevier, vol. 48(6).
    5. Emilia Ingemarsdotter & Derek Diener & Simon Andersson & Christian Jonasson & Ann-Charlotte Mellquist & Thomas Nyström & Ella Jamsin & Ruud Balkenende, 2021. "Quantifying the Net Environmental Impact of Using IoT to Support Circular Strategies—The Case of Heavy-Duty Truck Tires in Sweden," Circular Economy and Sustainability, Springer, vol. 1(2), pages 613-650, September.
    6. Heli Kasurinen & Saija Vatanen & Kaisa Grönman & Tiina Pajula & Laura Lakanen & Olli Salmela & Risto Soukka, 2019. "Carbon Handprint: Potential Climate Benefits of a Novel Liquid-Cooled Base Station with Waste Heat Reuse," Energies, MDPI, vol. 12(23), pages 1-18, November.
    7. Mauro Cordella & Felice Alfieri & Javier Sanfelix, 2021. "Reducing the carbon footprint of ICT products through material efficiency strategies: A life cycle analysis of smartphones," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 448-464, April.
    8. Williams, Laurence & Sovacool, Benjamin K. & Foxon, Timothy J., 2022. "The energy use implications of 5G: Reviewing whole network operational energy, embodied energy, and indirect effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    9. Roland Hischier, 2018. "Car vs. Packaging—A First, Simple (Environmental) Sustainability Assessment of Our Changing Shopping Behaviour," Sustainability, MDPI, vol. 10(9), pages 1-12, August.
    10. Tomasz Rokicki & Piotr Bórawski & Barbara Gradziuk & Piotr Gradziuk & Aldona Mrówczyńska-Kamińska & Joanna Kozak & Danuta Jolanta Guzal-Dec & Kamil Wojtczuk, 2021. "Differentiation and Changes of Household Electricity Prices in EU Countries," Energies, MDPI, vol. 14(21), pages 1-21, October.
    11. Hiekkanen, Kari & Seppälä, Timo & Ylhäinen, Ilkka, 2021. "Energy and Electricity Consumption of the Information Economy Sector in Finland," ETLA Reports 107, The Research Institute of the Finnish Economy.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Williams, Laurence & Sovacool, Benjamin K. & Foxon, Timothy J., 2022. "The energy use implications of 5G: Reviewing whole network operational energy, embodied energy, and indirect effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Valentina Romagnoli & Joachim Felix Aigner & Thomas Berlinghof & Niki Bey & Jan-Markus Rodger & Cordelia Patz, 2020. "Identification and assessment of opportunities and threats for the Circular Economy arising from E-commerce," JRC Research Reports JRC122233, Joint Research Centre.
    3. Wen-Cheng Lu, 2018. "The impacts of information and communication technology, energy consumption, financial development, and economic growth on carbon dioxide emissions in 12 Asian countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1351-1365, December.
    4. Tova Billstein & Anna Björklund & Tomas Rydberg, 2021. "Life Cycle Assessment of Network Traffic: A Review of Challenges and Possible Solutions," Sustainability, MDPI, vol. 13(20), pages 1-12, October.
    5. Roland Hischier, 2018. "Car vs. Packaging—A First, Simple (Environmental) Sustainability Assessment of Our Changing Shopping Behaviour," Sustainability, MDPI, vol. 10(9), pages 1-12, August.
    6. Madlener, Reinhard & Sheykhha, Siamak & Briglauer, Wolfgang, 2022. "The electricity- and CO2-saving potentials offered by regulation of European video-streaming services," Energy Policy, Elsevier, vol. 161(C).
    7. Daria Gritsenko & Jon Aaen & Bent Flyvbjerg, 2024. "Rethinking Digitalization and Climate: Don't Predict, Mitigate," Papers 2407.15016, arXiv.org.
    8. Zhenxiang Cao & Liqing Peng, 2023. "The Impact of Digital Economics on Environmental Quality: A System Dynamics Approach," SAGE Open, , vol. 13(4), pages 21582440231, December.
    9. Steffen Dalsgaard, 2022. "Can IT Resolve the Climate Crisis? Sketching the Role of an Anthropology of Digital Technology," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    10. Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238007, International Telecommunications Society (ITS).
    11. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    12. Wen Chen & Changyi Zhu & Qi Cheung & Siying Wu & Jun Zhang & Jia Cao, 2024. "How does digitization enable green innovation? Evidence from Chinese listed companies," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 3832-3854, July.
    13. Antonio Cavallin Toscani & Atalay Atasu & Luk N. Van Wassenhove & Andrea Vinelli, 2023. "Life cycle assessment of in‐person, virtual, and hybrid academic conferences: New evidence and perspectives," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1461-1475, December.
    14. Babasola Osibo & Simisola Adamo, 2023. "Data Centers and Green Energy: Paving the Way for a Sustainable Digital Future," International Journal of Latest Technology in Engineering, Management & Applied Science, International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS), vol. 12(11), pages 15-30, November.
    15. Tina Ringenson & Peter Arnfalk & Anna Kramers & Liridona Sopjani, 2018. "Indicators for Promising Accessibility and Mobility Services," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    16. Anders S. G. Andrae & Mengjun Xia & Jianli Zhang & Xiaoming Tang, 2016. "Practical Eco-Design and Eco-Innovation of Consumer Electronics—the Case of Mobile Phones," Challenges, MDPI, vol. 7(1), pages 1-19, February.
    17. Muhammad Fahad & Arsalan Shahid & Ravi Reddy Manumachu & Alexey Lastovetsky, 2019. "A Comparative Study of Methods for Measurement of Energy of Computing," Energies, MDPI, vol. 12(11), pages 1-42, June.
    18. Tilman Santarius & Johanna Pohl & Steffen Lange, 2020. "Digitalization and the Decoupling Debate: Can ICT Help to Reduce Environmental Impacts While the Economy Keeps Growing?," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    19. Christina J. Herden & Ervin Alliu & André Cakici & Thibaut Cormier & Catherine Deguelle & Sahil Gambhir & Caleb Griffiths & Shrishti Gupta & Sahil R. Kamani & Yonca-Selda Kiratli & Máté Kispataki & Gr, 2021. "“Corporate Digital Responsibility”," Sustainability Nexus Forum, Springer, vol. 29(1), pages 13-29, March.
    20. John Martinovic & Markus Hähnel & Guntram Scheithauer & Waltenegus Dargie, 2022. "An introduction to stochastic bin packing-based server consolidation with conflicts," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 296-331, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2494-:d:158313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.