IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i7p2444-d157703.html
   My bibliography  Save this article

A Comparative Analysis Selecting the Transport Routes of Electronics Components from China to Vietnam

Author

Listed:
  • Thi Yen Pham

    (Graduate School of Logistics, Incheon National University, 119, Academy-Ro, YeonSu-Gu, Incheon 22012, Korea)

  • Gi-Tae Yeo

    (Graduate School of Logistics, Incheon National University, 119, Academy-Ro, YeonSu-Gu, Incheon 22012, Korea)

Abstract

Vietnam has successfully integrated itself into the global value chains (GVCs) as a base for the assembly and production of electronics goods and mobile phones beyond China. Therefore, adequate transport routes from China to Vietnam are essential factors for a seamless supply chain. This study aimed to evaluate the competing transport routes for door-to-door transportation from Shenzhen (China) to Hai Phong (Vietnam) from the logistics service providers and shippers’ perspective. The Delphi method and the Consistent Fuzzy Preference Relations (CFPR) method were employed, using both qualitative and quantitative factors. The results illustrate that, among the principal factors, reliability is prioritized, followed by transportation costs, transportation mode capacity, and transportation time. Meanwhile, of the sub-factors, risk of freight damage and loss is the most important. The route using airway and truck is preferred over the two alternatives. Furthermore, a sensitivity analysis was conducted to examine the possibility of rank reversal. Thus, the study offers crucial academic and practical implications.

Suggested Citation

  • Thi Yen Pham & Gi-Tae Yeo, 2018. "A Comparative Analysis Selecting the Transport Routes of Electronics Components from China to Vietnam," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2444-:d:157703
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/7/2444/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/7/2444/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saaty, Thomas L., 2003. "Decision-making with the AHP: Why is the principal eigenvector necessary," European Journal of Operational Research, Elsevier, vol. 145(1), pages 85-91, February.
    2. Yang, Xuejing & Low, Joyce M.W. & Tang, Loon Ching, 2011. "Analysis of intermodal freight from China to Indian Ocean: A goal programming approach," Journal of Transport Geography, Elsevier, vol. 19(4), pages 515-527.
    3. Amir Samimi & Kazuya Kawamura & Abolfazl Mohammadian, 2011. "A behavioral analysis of freight mode choice decisions," Transportation Planning and Technology, Taylor & Francis Journals, vol. 34(8), pages 857-869, June.
    4. Ying Wang & Gi-Tae Yeo, 2018. "Intermodal route selection for cargo transportation from Korea to Central Asia by adopting Fuzzy Delphi and Fuzzy ELECTRE I methods," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(1), pages 3-18, January.
    5. Burak Ayar & Hande Yaman, 2012. "An intermodal multicommodity routing problem with scheduled services," Computational Optimization and Applications, Springer, vol. 53(1), pages 131-153, September.
    6. Herrera-Viedma, E. & Herrera, F. & Chiclana, F. & Luque, M., 2004. "Some issues on consistency of fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 154(1), pages 98-109, April.
    7. Kawasaki, Tomoya & Hanaoka, Shinya & Nguyen, Long Xuan, 2014. "The valuation of shipment time variability in Greater Mekong Subregion," Transport Policy, Elsevier, vol. 32(C), pages 25-33.
    8. Chia-Hua Cheng & James J. H. Liou & Chui-Yu Chiu, 2017. "A Consistent Fuzzy Preference Relations Based ANP Model for R&D Project Selection," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    9. Rowe, Gene & Wright, George, 1999. "The Delphi technique as a forecasting tool: issues and analysis," International Journal of Forecasting, Elsevier, vol. 15(4), pages 353-375, October.
    10. Andrea Gallo & Riccardo Accorsi & Giulia Baruffaldi & Riccardo Manzini, 2017. "Designing Sustainable Cold Chains for Long-Range Food Distribution: Energy-Effective Corridors on the Silk Road Belt," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    11. Yeo, Gi-Tae & Wang, Ying & Chou, Chien-Chang, 2013. "Evaluating the competitiveness of the aerotropolises in East Asia," Journal of Air Transport Management, Elsevier, vol. 32(C), pages 24-31.
    12. Hao Yu & Wei Deng Solvang, 2016. "A Stochastic Programming Approach with Improved Multi-Criteria Scenario-Based Solution Method for Sustainable Reverse Logistics Design of Waste Electrical and Electronic Equipment (WEEE)," Sustainability, MDPI, vol. 8(12), pages 1-28, December.
    13. Geist, Monica R., 2010. "Using the Delphi method to engage stakeholders: A comparison of two studies," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 147-154, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Qinglin & Rezaei, Jafar & Tavasszy, Lori & Wiegmans, Bart & Guo, Jingwei & Tang, Yinying & Peng, Qiyuan, 2020. "Customers’ preferences for freight service attributes of China Railway Express," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 225-236.
    2. Thi Yen Pham & Gi-Tae Yeo, 2019. "Evaluation of Transshipment Container Terminals’ Service Quality in Vietnam: From the Shipping Companies’ Perspective," Sustainability, MDPI, vol. 11(5), pages 1-14, March.
    3. Teerasak Charoennapharat & Poti Chaopaisarn, 2022. "Factors Affecting Multimodal Transport during COVID-19: A Thai Service Provider Perspective," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    4. Haili Zhang & Michael Song & Xiaoming Yang & Ping Li, 2019. "What are Important Technologies for Sustainable Development in the Trucking Industries of Emerging Markets? Differences between Organizational and Individual Buyers," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    5. Edmund J. Malesky & Layna Mosley, 2021. "Labor upgrading and export market opportunities: Evidence from Vietnam," Economics and Politics, Wiley Blackwell, vol. 33(3), pages 483-513, November.
    6. Gohari, Adel & Ahmad, Anuar Bin & Balasbaneh, Ali Tighnavard & Gohari, Ali & Hasan, Razi & Sholagberu, Abdulkadir Taofeeq, 2022. "Significance of intermodal freight modal choice criteria: MCDM-based decision support models and SP-based modal shift policies," Transport Policy, Elsevier, vol. 121(C), pages 46-60.
    7. Melinda Timea Fülöp & Miklós Gubán & György Kovács & Mihály Avornicului, 2021. "Economic Development Based on a Mathematical Model: An Optimal Solution Method for the Fuel Supply of International Road Transport Activity," Energies, MDPI, vol. 14(10), pages 1-22, May.
    8. Junseung Kim & Kyungku Kim & Kum Fai Yuen & Keun-Sik Park, 2020. "Cost and Scenario Analysis of Intermodal Transportation Routes from Korea to the USA: After the Panama Canal Expansion," Sustainability, MDPI, vol. 12(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thi Yen Pham & Ki Young Kim & Gi-Tae YEO, 2018. "The Panama Canal Expansion and Its Impact on East–West Liner Shipping Route Selection," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    2. Junseung Kim & Kyungku Kim & Kum Fai Yuen & Keun-Sik Park, 2020. "Cost and Scenario Analysis of Intermodal Transportation Routes from Korea to the USA: After the Panama Canal Expansion," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    3. Thi Yen Pham & Gi-Tae Yeo, 2019. "Evaluation of Transshipment Container Terminals’ Service Quality in Vietnam: From the Shipping Companies’ Perspective," Sustainability, MDPI, vol. 11(5), pages 1-14, March.
    4. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    5. Gohari, Adel & Ahmad, Anuar Bin & Balasbaneh, Ali Tighnavard & Gohari, Ali & Hasan, Razi & Sholagberu, Abdulkadir Taofeeq, 2022. "Significance of intermodal freight modal choice criteria: MCDM-based decision support models and SP-based modal shift policies," Transport Policy, Elsevier, vol. 121(C), pages 46-60.
    6. Tobias Meyer & Heiko A. von der Gracht & Evi Hartmann, 2022. "Technology foresight for sustainable road freight transportation: Insights from a global real‐time Delphi study," Futures & Foresight Science, John Wiley & Sons, vol. 4(1), March.
    7. Wu, Zhibin & Huang, Shuai & Xu, Jiuping, 2019. "Multi-stage optimization models for individual consistency and group consensus with preference relations," European Journal of Operational Research, Elsevier, vol. 275(1), pages 182-194.
    8. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    9. Dong, Yucheng & Xu, Yinfeng & Li, Hongyi & Dai, Min, 2008. "A comparative study of the numerical scales and the prioritization methods in AHP," European Journal of Operational Research, Elsevier, vol. 186(1), pages 229-242, April.
    10. Belton, Ian & MacDonald, Alice & Wright, George & Hamlin, Iain, 2019. "Improving the practical application of the Delphi method in group-based judgment: A six-step prescription for a well-founded and defensible process," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 72-82.
    11. Förster, Bernadette & von der Gracht, Heiko, 2014. "Assessing Delphi panel composition for strategic foresight — A comparison of panels based on company-internal and external participants," Technological Forecasting and Social Change, Elsevier, vol. 84(C), pages 215-229.
    12. Yi Zhao & Ronghui Liu & Xi Zhang & Anthony Whiteing, 2018. "A chance-constrained stochastic approach to intermodal container routing problems," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-22, February.
    13. Elena Arce, María & Saavedra, Ángeles & Míguez, José L. & Granada, Enrique, 2015. "The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 924-932.
    14. Rizwan Shoukat, 2023. "Multimodal or intermodal: greenhouse gas emissions in less than container load in China–Pakistan trade," Environment Systems and Decisions, Springer, vol. 43(2), pages 265-280, June.
    15. Mohammed, Sayeed & Desha, Cheryl & Goonetilleke, Ashantha, 2023. "Investigating the potential of low-carbon pathways for hydrocarbon-dependent rentier states: Sociotechnical transition in Qatar," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    16. Kopyto, Matthias & Lechler, Sabrina & von der Gracht, Heiko A. & Hartmann, Evi, 2020. "Potentials of blockchain technology in supply chain management: Long-term judgments of an international expert panel," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    17. Pätäri, Satu & Tuppura, Anni & Toppinen, Anne & Korhonen, Jaana, 2016. "Global sustainability megaforces in shaping the future of the European pulp and paper industry towards a bioeconomy," Forest Policy and Economics, Elsevier, vol. 66(C), pages 38-46.
    18. Nathathai Krebs, 2019. "Optimal Route in International Transportation of Thailand � Guangxi (China)," GATR Journals gjbssr527, Global Academy of Training and Research (GATR) Enterprise.
    19. Bice Cavallo, 2019. "Coherent weights for pairwise comparison matrices and a mixed-integer linear programming problem," Journal of Global Optimization, Springer, vol. 75(1), pages 143-161, September.
    20. Prommer, Lisa & Tiberius, Victor & Kraus, Sascha, 2020. "Exploring the future of startup leadership development," Journal of Business Venturing Insights, Elsevier, vol. 14(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:7:p:2444-:d:157703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.