IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v144y2018icp12-26.html
   My bibliography  Save this article

Water Quality Management and Climate Change Mitigation: Cost-effectiveness of Joint Implementation in the Baltic Sea Region

Author

Listed:
  • Nainggolan, Doan
  • Hasler, Berit
  • Andersen, Hans E.
  • Gyldenkærne, Steen
  • Termansen, Mette

Abstract

This paper explores the scope for simultaneously managing nutrient abatement and climate change mitigation in the Baltic Sea (BS) region through the implementation of a selection of measures. The analysis is undertaken using a cost-minimisation model for the entire BS region, the BALTCOST model. In the present research, the model has been extended to include greenhouse gas (GHG) emissions effects, enabling us to analyse the trade-offs between cost-effective GHG and nutrient load reductions. We run the model for four different scenarios in order to compare the environmental and economic consequences of contrasting strategies: single environmental objective management versus joint implementation strategy. The results show that implementing land-based measures with a sole focus on water quality (to meet the HELCOM's 2013 Baltic Sea Action Plan nutrient abatement targets) can produce climate change mitigation co-benefits equivalent to 2.3% of the 2005 emission level (from agriculture and waste water combined) for the entirety of the BS region. More interestingly, a joint implementation strategy can deliver further climate change mitigation benefit (i.e. up to 5.4%) at a marginal cost that is comparable to mitigation costs reported by other studies for efficient technologies. All in all the results demonstrate that a joint strategy to improve water quality and to reduce climate change is economically beneficial. Our findings show that the cost and the outcome of the implementation vary between countries. This illustrates the need to develop a joint regional policy for water and climate regulation that fully considers the asymmetry in both the expected effects and cost distribution across the countries in the region.

Suggested Citation

  • Nainggolan, Doan & Hasler, Berit & Andersen, Hans E. & Gyldenkærne, Steen & Termansen, Mette, 2018. "Water Quality Management and Climate Change Mitigation: Cost-effectiveness of Joint Implementation in the Baltic Sea Region," Ecological Economics, Elsevier, vol. 144(C), pages 12-26.
  • Handle: RePEc:eee:ecolec:v:144:y:2018:i:c:p:12-26
    DOI: 10.1016/j.ecolecon.2017.07.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800916311788
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2017.07.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael MacLeod & Vera Eory & Guillaume Gruère & Jussi Lankoski, 2015. "Cost-Effectiveness of Greenhouse Gas Mitigation Measures for Agriculture: A Literature Review," OECD Food, Agriculture and Fisheries Papers 89, OECD Publishing.
    2. Iho, Antti & Laukkanen, Marita, 2012. "Precision phosphorus management and agricultural phosphorus loading," Ecological Economics, Elsevier, vol. 77(C), pages 91-102.
    3. De Cara, Stéphane & Jayet, Pierre-Alain, 2011. "Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement," Ecological Economics, Elsevier, vol. 70(9), pages 1680-1690, July.
    4. Krzysztof Berbeka & Mikołaj Czajkowski & Agnieszka Markowska, 2012. "Municipal Wastewater Treatment in Poland – Efficiency, Costs and Returns to Scale," Working Papers 2012-03, Faculty of Economic Sciences, University of Warsaw.
    5. Iho, Antti, 2005. "Does Scale Matter? Cost Effectiveness of Agricultural Nutrient Abatement When Target Level Varies," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24701, European Association of Agricultural Economists.
    6. Honkatukia, Juha & Ollikainen, Markku, 2001. "Towards Efficient Pollution Control in the Baltic Sea. An anatomy of current failure with suggestions," Discussion Papers 755, The Research Institute of the Finnish Economy.
    7. Balana, Bedru Babulo & Vinten, Andy & Slee, Bill, 2011. "A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: Key issues, methods, and applications," Ecological Economics, Elsevier, vol. 70(6), pages 1021-1031, April.
    8. Kuik, Onno & Brander, Luke & Tol, Richard S.J., 2009. "Marginal abatement costs of greenhouse gas emissions: A meta-analysis," Energy Policy, Elsevier, vol. 37(4), pages 1395-1403, April.
    9. Maria Theresia Konrad & Hans Estrup Andersen & Steen Gyldenkœrne & Mette Termansen, 2017. "Synergies and Trade-offs in Spatially Targeted Water Quality and Climate Change Mitigation Policies," Land Economics, University of Wisconsin Press, vol. 93(2), pages 309-327.
    10. Turner, R. Kerry & Georgiou, Stavros & Gren, Ing-Marie & Wulff, Fredric & Barrett, Scott & Soderqvist, Tore & Bateman, Ian J. & Folke, Carl & Langaas, Sindre & Zylicz, Tomasz, 1999. "Managing nutrient fluxes and pollution in the Baltic: an interdisciplinary simulation study," Ecological Economics, Elsevier, vol. 30(2), pages 333-352, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark V. Brady & Jordan Hristov & Fredrik Wilhelmsson & Katarina Hedlund, 2019. "Roadmap for Valuing Soil Ecosystem Services to Inform Multi-Level Decision-Making in Agriculture," Sustainability, MDPI, vol. 11(19), pages 1-20, September.
    2. Gren, Ing-Marie & Ang, Frederic, 2019. "Stacking of abatement credits for cost-effective achievement of climate and water targets," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George HALKOS & Georgia GALANI, 2014. "Cost Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas A Review," Journal of Advanced Research in Management, ASERS Publishing, vol. 5(1), pages 28-51.
    2. Konrad, Maria Theresia & Hansen, Line Block & Levin, Gregor & Blicher-Mathiesen, Gitte & Andersen, Hans Estrup & Martinsen, Louise & Hasler, Berit, 2022. "Targeted regulation of nitrogen loads: A national, cross-sectoral analysis," Ecological Economics, Elsevier, vol. 193(C).
    3. Aftab, Ashar & Hanley, Nick & Baiocchi, Giovanni, 2017. "Transferability of Policies to Control Agricultural Nonpoint Pollution in Relatively Similar Catchments," Ecological Economics, Elsevier, vol. 134(C), pages 11-21.
    4. Thomas Fellmann & Peter Witzke & Franz Weiss & Benjamin Van Doorslaer & Dusan Drabik & Ingo Huck & Guna Salputra & Torbjörn Jansson & Adrian Leip, 2018. "Major challenges of integrating agriculture into climate change mitigation policy frameworks," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 451-468, March.
    5. Valatin, G. & Ovando, P. & Abildtrup, J. & Accastello, C. & Andreucci, M.B. & Chikalanov, A. & El Mokaddem, A. & Garcia, S. & Gonzalez-Sanchis, M. & Gordillo, F. & Kayacan, B. & Little, D. & Lyubenova, 2022. "Approaches to cost-effectiveness of payments for tree planting and forest management for water quality services," Ecosystem Services, Elsevier, vol. 53(C).
    6. Yuan, Jun & Ng, Szu Hui, 2017. "Emission reduction measures ranking under uncertainty," Applied Energy, Elsevier, vol. 188(C), pages 270-279.
    7. Fröschl, Lena & Pierrard, Roger & Schönbäck, Wilfried, 2008. "Cost-efficient choice of measures in agriculture to reduce the nitrogen load flowing from the Danube River into the Black Sea: An analysis for Austria, Bulgaria, Hungary and Romania," Ecological Economics, Elsevier, vol. 68(1-2), pages 96-105, December.
    8. Hyytiainen, Kari & Ahtiainen, Heini & Heikkila, Jaakko & Helin, Janne & Huhtala, Anni & Iho, Antti & Koikkalainen, Kauko & Miettinen, Antti & Pouta, Eija & Vesterinen, Janne, 2009. "An integrated simulation model to evaluate national policies for the abatement of agricultural nutrients in the Baltic Sea," Discussion Papers 49896, MTT Agrifood Research Finland.
    9. Krimly, Tatjana & Angenendt, Elisabeth & Bahrs, Enno & Dabbert, Stephan, 2016. "Global warming potential and abatement costs of different peatland management options: A case study for the Pre-alpine Hill and Moorland in Germany," Agricultural Systems, Elsevier, vol. 145(C), pages 1-12.
    10. Soile Oinonen & Kari Hyytiäinen & Lassi Ahlvik & Maria Laamanen & Virpi Lehtoranta & Joona Salojärvi & Jarno Virtanen, 2016. "Cost-Effective Marine Protection - A Pragmatic Approach," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-19, January.
    11. Filippelli, Raphael & Termansen, Mette & Hasan, Syezlin & Hasler, Berit & Hansen, Line & Smart, James C.R., 2022. "Water quality trading markets – Integrating land and marine based measures under a smart market approach," Ecological Economics, Elsevier, vol. 200(C).
    12. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    13. Michael MacLeod & Vera Eory & William Wint & Alexandra Shaw & Pierre J. Gerber & Giuliano Cecchi & Raffaele Mattioli & Alasdair Sykes & Timothy Robinson, 2018. "Assessing the Greenhouse Gas Mitigation Effect of Removing Bovine Trypanosomiasis in Eastern Africa," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    14. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    15. Zhu, Bangzhu & Jiang, Mingxing & He, Kaijian & Chevallier, Julien & Xie, Rui, 2018. "Allocating CO2 allowances to emitters in China: A multi-objective decision approach," Energy Policy, Elsevier, vol. 121(C), pages 441-451.
    16. Bayer, Patrick & Marcoux, Christopher & Urpelainen, Johannes, 2013. "Leveraging private capital for climate mitigation: Evidence from the Clean Development Mechanism," Ecological Economics, Elsevier, vol. 96(C), pages 14-24.
    17. Kari Hyytiäinen & Anni Huhtala, 2014. "Combating eutrophication in coastal areas at risk for oil spills," Annals of Operations Research, Springer, vol. 219(1), pages 101-121, August.
    18. Kazushi Hatase & Shunsuke Managi, 2015. "Increase in carbon prices: analysis of energy-economy modeling," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(2), pages 241-262, April.
    19. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    20. Sidemo-Holm, William & Smith, Henrik G. & Brady, Mark V., 2018. "Improving agricultural pollution abatement through result-based payment schemes," Land Use Policy, Elsevier, vol. 77(C), pages 209-219.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:144:y:2018:i:c:p:12-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.