IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10017-d630619.html
   My bibliography  Save this article

A Roof of Greenery, but a Sky of Unexplored Relations—Meta-Analysis of Factors and Properties That Affect Green Roof Hydrological and Thermal Performances

Author

Listed:
  • Mithun Hanumesh

    (Cerema DTer-Est/LRN, 71 Rue de la Grande Haie, F-54510 Tomblaine, France
    Laboratoire Sols et Environnement, Université de Lorraine-INRA, 2 Avenue de la Forêt de Haye, BP 172, F-54505 Vandoeuvre lès Nancy, France)

  • Rémy Claverie

    (Cerema DTer-Est/LRN, 71 Rue de la Grande Haie, F-54510 Tomblaine, France)

  • Geoffroy Séré

    (Laboratoire Sols et Environnement, Université de Lorraine-INRA, 2 Avenue de la Forêt de Haye, BP 172, F-54505 Vandoeuvre lès Nancy, France)

Abstract

Green roofs are expected to contribute to the mitigation of multiple environmental issues that affect urban areas. Owing to their composition, organization, and external factors, the performances of green roofs have been demonstrated to be overall positive but strongly variable. Our work first aims at proposing consensual definitions and a frame adapted to these biotic-abiotic systems. It also aims at shedding light on the qualitative relations between various internal properties and external factors of green roofs on their hydrological and thermal performances. One hundred relevant study papers were filtered from 395 papers as per our defined search criteria based on originality and precision. The expectations were to be capable of hierarchizing factors and properties that would influence the performances of green roofs. The main findings highlighted that most factors and properties have a positive influence on the performances of green roofs, showing there are many existing levers to enhance the green roof performances and tackle some of the main urban environmental issues. However, even if previous research has already explored various relations, in the final filtered consideration of 6 performances and 30 factors and properties, there was a possibility of 180 combined factor–property–performance relations studies overall. Out of these possibilities, only 82 have been studied at least once, leaving the other 98 relations (54%) unexplored. Considering that these lists were far from exhaustive, a huge potential in determining green roof performances remains unearthed. In this regard, various proposals have been made regarding: (i) identification of levers to enhance the performances of green roofs; (ii) filling the gaps: the exploration of the unstudied relations; (iii) promotion of deeper and innovative experimental approaches for research on green roof performances; and (iv) the shift from mono to transdisciplinary research about green roofs.

Suggested Citation

  • Mithun Hanumesh & Rémy Claverie & Geoffroy Séré, 2021. "A Roof of Greenery, but a Sky of Unexplored Relations—Meta-Analysis of Factors and Properties That Affect Green Roof Hydrological and Thermal Performances," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10017-:d:630619
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hashemi, Sajedeh Sadat Ghazizadeh & Mahmud, Hilmi Bin & Ashraf, Muhammad Aqeel, 2015. "Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 669-679.
    2. Patrizia Piro & Marco Carbone & Marilena De Simone & Mario Maiolo & Piero Bevilacqua & Natale Arcuri, 2018. "Energy and Hydraulic Performance of a Vegetated Roof in Sub-Mediterranean Climate," Sustainability, MDPI, vol. 10(10), pages 1-13, September.
    3. Jaffal, Issa & Ouldboukhitine, Salah-Eddine & Belarbi, Rafik, 2012. "A comprehensive study of the impact of green roofs on building energy performance," Renewable Energy, Elsevier, vol. 43(C), pages 157-164.
    4. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    5. Teodoro Semeraro & Aurelia Scarano & Riccardo Buccolieri & Angelo Santino & Eeva Aarrevaara, 2021. "Planning of Urban Green Spaces: An Ecological Perspective on Human Benefits," Land, MDPI, vol. 10(2), pages 1-26, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Sergeevna Shushunova & Elena Anatolyevna Korol & Nikolai Ivanovich Vatin, 2021. "Modular Green Roofs for the Sustainability of the Built Environment: The Installation Process," Sustainability, MDPI, vol. 13(24), pages 1-11, December.
    2. Elena Korol & Natalia Shushunova, 2022. "Analysis and Valuation of the Energy-Efficient Residential Building with Innovative Modular Green Wall Systems," Sustainability, MDPI, vol. 14(11), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    2. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    4. Vijayaraghavan, K., 2016. "Green roofs: A critical review on the role of components, benefits, limitations and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 740-752.
    5. Daniel Mora-Melià & Carlos S. López-Aburto & Pablo Ballesteros-Pérez & Pedro Muñoz-Velasco, 2018. "Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    6. Carlo Alberto Campiotti & Carlo Bibbiani & Alberto Campiotti & Evelia Schettini & Corinna Viola & Giuliano Vox, 2016. "Innovative sustainable strategies in agro-food systems and in buildings for energy efficiency," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 2016(2), pages 79-96.
    7. Yara Nasr & Henri El Zakhem & Ameur El Amine Hamami & Makram El Bachawati & Rafik Belarbi, 2024. "Comprehensive Assessment of the Impact of Green Roofs and Walls on Building Energy Performance: A Scientific Review," Energies, MDPI, vol. 17(20), pages 1-58, October.
    8. Maria Luíza Santos & Cristina Matos Silva & Filipa Ferreira & José Saldanha Matos, 2023. "Hydrological Analysis of Green Roofs Performance under a Mediterranean Climate: A Case Study in Lisbon, Portugal," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    9. Liberalesso, Tiago & Oliveira Cruz, Carlos & Matos Silva, Cristina & Manso, Maria, 2020. "Green infrastructure and public policies: An international review of green roofs and green walls incentives," Land Use Policy, Elsevier, vol. 96(C).
    10. Dimitris Perivoliotis & Iasonas Arvanitis & Anna Tzavali & Vassilios Papakostas & Sophia Kappou & George Andreakos & Angeliki Fotiadi & John A. Paravantis & Manolis Souliotis & Giouli Mihalakakou, 2023. "Sustainable Urban Environment through Green Roofs: A Literature Review with Case Studies," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
    11. Yang, An-Shik & Juan, Yu-Hsuan & Wen, Chih-Yung & Chang, Chao-Jui, 2017. "Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park," Applied Energy, Elsevier, vol. 192(C), pages 178-200.
    12. Teresa Santos & José António Tenedório & José Alberto Gonçalves, 2016. "Quantifying the City’s Green Area Potential Gain Using Remote Sensing Data," Sustainability, MDPI, vol. 8(12), pages 1-16, November.
    13. Shafique, Muhammad & Kim, Reeho & Rafiq, Muhammad, 2018. "Green roof benefits, opportunities and challenges – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 757-773.
    14. Mitali Yeshwant Joshi & Jacques Teller, 2021. "Urban Integration of Green Roofs: Current Challenges and Perspectives," Sustainability, MDPI, vol. 13(22), pages 1-33, November.
    15. Mehrdad Borna & Giulia Turci & Marco Marchetti & Rosa Schiano-Phan, 2024. "Evaluating the Influence of Urban Blocks on Air Pollution Concentration Levels: The Case Study of Golden Lane Estate in London," Sustainability, MDPI, vol. 16(2), pages 1-28, January.
    16. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Koo, Choongwan & Jeong, Kwangbok, 2016. "An optimization model for selecting the optimal green systems by considering the thermal comfort and energy consumption," Applied Energy, Elsevier, vol. 169(C), pages 682-695.
    17. Liu, Min (Max), 2014. "Probabilistic prediction of green roof energy performance under parameter uncertainty," Energy, Elsevier, vol. 77(C), pages 667-674.
    18. Hashemi, Sajedeh Sadat Ghazizadeh & Mahmud, Hilmi Bin & Ashraf, Muhammad Aqeel, 2015. "Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 669-679.
    19. Renata Giedych & Gabriela Maksymiuk & Agata Cieszewska, 2024. "Eco-Spatial Indices as an Effective Tool for Climate Change Adaptation in Residential Neighbourhoods—Comparative Study," Land, MDPI, vol. 13(9), pages 1-18, September.
    20. Abdullah Addas, 2023. "Understanding the Relationship between Urban Biophysical Composition and Land Surface Temperature in a Hot Desert Megacity (Saudi Arabia)," IJERPH, MDPI, vol. 20(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10017-:d:630619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.