IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4790-d190817.html
   My bibliography  Save this article

The Evolution of International Scientific Collaboration in Fuel Cells during 1998–2017: A Social Network Perspective

Author

Listed:
  • Xuan Shi

    (School of Economics and Management, University of Shanxi, Taiyuan 030006, China)

  • Lingfei Cai

    (School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China)

  • Junzhi Jia

    (School of Information Resource Management, Renmin University of China, Beijing 100872, China)

Abstract

International scientific collaboration has played an important role in the development of fuel cell technology. In this paper, we employ bibliometric methods and social network analysis to explore the patterns and dynamics of scientific collaboration network of fuel cells. A total of 20,358 international collaborative publications in the fuel cell field published during 1998–2017 were collected from Web of Science. We use a series of indicators to address multiple facets of research collaboration and evolution patterns. Results show that international collaboration has been increasing and the characteristics of the scientific network have changed over time. The collaboration network presented a highly uneven distribution, while the sign of decline began to show. The trend of consolidation was presented with one cluster around North America–Asia, one around Europe, and a small emerging collaborating cluster around West Asia. European and North American countries had relatively higher international collaboration rate than Asian countries but lower publishing volume. Two modes of international collaboration exist: Germany, France and UK collaborate with a wide range of countries, while Singapore, Australia, South Korea and Taiwan concentrate on collaborating with few main countries. Microbial fuel cell had developed as a new prominent area in the international collaboration, and the most popular catalysts were nanoparticle and graphene/carbon nanotubes. This study presents a picture of international collaboration from multi-dimension view and provides insights in facilitating more vigorous collaborations in fuel cells.

Suggested Citation

  • Xuan Shi & Lingfei Cai & Junzhi Jia, 2018. "The Evolution of International Scientific Collaboration in Fuel Cells during 1998–2017: A Social Network Perspective," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4790-:d:190817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4790/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4790/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimo Franceschet, 2011. "Collaboration in computer science: A network science approach," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(10), pages 1992-2012, October.
    2. Chen, Hua-Qi & Wang, Xiuping & He, Li & Chen, Ping & Wan, Yuehua & Yang, Lingyun & Jiang, Shuian, 2016. "Chinese energy and fuels research priorities and trend: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 966-975.
    3. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    4. van Eck, N.J.P. & Waltman, L., 2009. "VOSviewer: A Computer Program for Bibliometric Mapping," ERIM Report Series Research in Management ERS-2009-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Arho Suominen, 2014. "Phases of growth in a green tech research network: a bibliometric evaluation of fuel cell technology from 1991 to 2010," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 51-72, July.
    6. Andújar, J.M. & Segura, F., 2009. "Fuel cells: History and updating. A walk along two centuries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2309-2322, December.
    7. Hanna-Mari Puuska & Reetta Muhonen & Yrjö Leino, 2014. "International and domestic co-publishing and their citation impact in different disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 823-839, February.
    8. Das, Vipin & Padmanaban, Sanjeevikumar & Venkitusamy, Karthikeyan & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Siano, Pierluigi, 2017. "Recent advances and challenges of fuel cell based power system architectures and control – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 10-18.
    9. Ki-Wan Kim, 2006. "Measuring international research collaboration of peripheral countries: Taking the context into consideration," Scientometrics, Springer;Akadémiai Kiadó, vol. 66(2), pages 231-240, February.
    10. Massimo Franceschet, 2011. "Collaboration in computer science: A network science approach," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(10), pages 1992-2012, October.
    11. Mario Coccia & Barry Bozeman, 2016. "Allometric models to measure and analyze the evolution of international research collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1065-1084, September.
    12. Karim, N.A. & Kamarudin, S.K., 2013. "An overview on non-platinum cathode catalysts for direct methanol fuel cell," Applied Energy, Elsevier, vol. 103(C), pages 212-220.
    13. Antje Klitkou & Stian Nygaard & Martin Meyer, 2007. "Tracking techno-science networks: A case study of fuel cells and related hydrogen technology R&D in Norway," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(2), pages 491-518, February.
    14. Jinseok Kim & Liang Tao & Seok-Hyoung Lee & Jana Diesner, 2016. "Evolution and structure of scientific co-publishing network in Korea between 1948–2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 27-41, April.
    15. Takaya Ogawa & Mizutomo Takeuchi & Yuya Kajikawa, 2018. "Comprehensive Analysis of Trends and Emerging Technologies in All Types of Fuel Cells Based on a Computational Method," Sustainability, MDPI, vol. 10(2), pages 1-30, February.
    16. Manganote, Edmilson J.T. & Araujo, Mariana S. & Schulz, Peter A., 2014. "Visualization of ranking data: Geographical signatures in international collaboration, leadership and research impact," Journal of Informetrics, Elsevier, vol. 8(3), pages 642-649.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lipeng Fan & Yuefen Wang & Shengchun Ding & Binbin Qi, 2020. "Productivity trends and citation impact of different institutional collaboration patterns at the research units’ level," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1179-1196, November.
    2. João M. Fernandes & Miguel P. Monteiro, 2017. "Evolution in the number of authors of computer science publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(2), pages 529-539, February.
    3. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    4. Kim, Jinseok & Diesner, Jana, 2015. "The effect of data pre-processing on understanding the evolution of collaboration networks," Journal of Informetrics, Elsevier, vol. 9(1), pages 226-236.
    5. Vincenza Carchiolo & Marco Grassia & Michele Malgeri & Giuseppe Mangioni, 2022. "Co-Authorship Networks Analysis to Discover Collaboration Patterns among Italian Researchers," Future Internet, MDPI, vol. 14(6), pages 1-15, June.
    6. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    7. Jinseok Kim & Liang Tao & Seok-Hyoung Lee & Jana Diesner, 2016. "Evolution and structure of scientific co-publishing network in Korea between 1948–2011," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 27-41, April.
    8. Yuxiao Qin & Li Sun & Qingsong Hua & Ping Liu, 2018. "A Fuzzy Adaptive PID Controller Design for Fuel Cell Power Plant," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    9. Blandy Pamplona Solis & Julio César Cruz Argüello & Leopoldo Gómez Barba & Mayra Polett Gurrola & Zakaryaa Zarhri & Danna Lizeth TrejoArroyo, 2019. "Bibliometric Analysis of the Mass Transport in a Gas Diffusion Layer in PEM Fuel Cells," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    10. Javier Luis Cánovas Izquierdo & Valerio Cosentino & Jordi Cabot, 2016. "Analysis of co-authorship graphs of CORE-ranked software conferences," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1665-1693, December.
    11. Marcus Evandro Teixeira Souza Junior & Luiz Carlos Gomes Freitas, 2022. "Power Electronics for Modern Sustainable Power Systems: Distributed Generation, Microgrids and Smart Grids—A Review," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
    12. Fernandes, Marina Domingues & Bistritzki, Victor & Domingues, Rosana Zacarias & Matencio, Tulio & Rapini, Márcia & Sinisterra, Rubén Dario, 2020. "Solid oxide fuel cell technology paths: National innovation system contributions from Japan and the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    13. Sung-Seok Ko & Namuk Ko & Doyeon Kim & Hyunseok Park & Janghyeok Yoon, 2014. "Analyzing technology impact networks for R&D planning using patents: combined application of network approaches," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 917-936, October.
    14. Mario Coccia & Barry Bozeman, 2016. "Allometric models to measure and analyze the evolution of international research collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1065-1084, September.
    15. Mohammed, Hanin & Al-Othman, Amani & Nancarrow, Paul & Tawalbeh, Muhammad & El Haj Assad, Mamdouh, 2019. "Direct hydrocarbon fuel cells: A promising technology for improving energy efficiency," Energy, Elsevier, vol. 172(C), pages 207-219.
    16. Jinseok Kim, 2018. "Evaluating author name disambiguation for digital libraries: a case of DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1867-1886, September.
    17. João M. Fernandes & António Costa & Paulo Cortez, 2022. "Author placement in Computer Science: a study based on the careers of ACM Fellows," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 351-368, January.
    18. Alfonso Ibáñez & Concha Bielza & Pedro Larrañaga, 2013. "Relationship among research collaboration, number of documents and number of citations: a case study in Spanish computer science production in 2000–2009," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 689-716, May.
    19. Shahadat Uddin & Nazim Choudhury & Md Ekramul Hossain, 2019. "A research framework to explore knowledge evolution and scholarly quantification of collaborative research," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 789-803, May.
    20. Gian Maria Campedelli, 2021. "Where are we? Using Scopus to map the literature at the intersection between artificial intelligence and research on crime," Journal of Computational Social Science, Springer, vol. 4(2), pages 503-530, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4790-:d:190817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.