IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p458-d131095.html
   My bibliography  Save this article

Comprehensive Analysis of Trends and Emerging Technologies in All Types of Fuel Cells Based on a Computational Method

Author

Listed:
  • Takaya Ogawa

    (SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
    Present address: Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.)

  • Mizutomo Takeuchi

    (Department of Technology and Innovation Management, School of Environment and Society, Tokyo Institute of Technology, Tokyo 108–0023, Japan)

  • Yuya Kajikawa

    (Department of Technology and Innovation Management, School of Environment and Society, Tokyo Institute of Technology, Tokyo 108–0023, Japan)

Abstract

Fuel cells have been attracting significant attention recently as highly efficient and eco-friendly energy generators. Here, we have comprehensively reviewed all types of fuel cells using computational analysis based on a citation network that detects emerging technologies objectively and provides interdisciplinary data to compare trends. This comparison shows that the technologies of solid oxide fuel cells (SOFCs) and electrolytes in polymer electrolyte fuel cells (PEFCs) are at the mature stage, whereas those of biofuel cells (BFCs) and catalysts in PEFCs are currently garnering attention. It does not mean, however, that the challenges of SOFCs and PEFC electrolytes have been overcome. SOFCs need to be operated at lower temperatures, approximately 500 °C. Electrolytes in PEFCs still suffer from a severe decrease in proton conductivity at low relative humidity and from their high cost. Catalysts in PEFCs are becoming attractive as means to reduce the platinum catalyst cost. The emerging technologies in PEFC catalysts are mainly heteroatom-doped graphene/carbon nanotubes for metal-free catalysts and supports for iron- or cobalt-based catalysts. BFCs have also received attention for wastewater treatment and as miniaturized energy sources. Of particular interest in BFCs are membrane reactors in microbial fuel cells and membrane-less enzymatic biofuel cells.

Suggested Citation

  • Takaya Ogawa & Mizutomo Takeuchi & Yuya Kajikawa, 2018. "Comprehensive Analysis of Trends and Emerging Technologies in All Types of Fuel Cells Based on a Computational Method," Sustainability, MDPI, vol. 10(2), pages 1-30, February.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:458-:d:131095
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zongping Shao & Sossina M. Haile, 2004. "A high-performance cathode for the next generation of solid-oxide fuel cells," Nature, Nature, vol. 431(7005), pages 170-173, September.
    2. Frank M. Bass, 2004. "Comments on "A New Product Growth for Model Consumer Durables The Bass Model"," Management Science, INFORMS, vol. 50(12_supple), pages 1833-1840, December.
    3. Ogawa, Takaya & Kajikawa, Yuya, 2017. "Generating novel research ideas using computational intelligence: A case study involving fuel cells and ammonia synthesis," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 41-47.
    4. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    5. Naoki Shibata & Yuya Kajikawa & Yoshiyuki Takeda & Katsumori Matsushima, 2009. "Comparative study on methods of detecting research fronts using different types of citation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(3), pages 571-580, March.
    6. Uzunoglu, M. & Onar, O.C. & Alam, M.S., 2009. "Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications," Renewable Energy, Elsevier, vol. 34(3), pages 509-520.
    7. Hakimi, S.M. & Moghaddas-Tafreshi, S.M., 2009. "Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran," Renewable Energy, Elsevier, vol. 34(7), pages 1855-1862.
    8. Sossina M. Haile & Dane A. Boysen & Calum R. I. Chisholm & Ryan B. Merle, 2001. "Solid acids as fuel cell electrolytes," Nature, Nature, vol. 410(6831), pages 910-913, April.
    9. Hawkes, A.D. & Leach, M.A., 2007. "Cost-effective operating strategy for residential micro-combined heat and power," Energy, Elsevier, vol. 32(5), pages 711-723.
    10. Ogawa, Takaya & Kajikawa, Yuya, 2015. "Assessing the industrial opportunity of academic research with patent relatedness: A case study on polymer electrolyte fuel cells," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 469-475.
    11. Santos, D.M.F. & Sequeira, C.A.C., 2011. "Sodium borohydride as a fuel for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3980-4001.
    12. Frank M. Bass, 2004. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 50(12_supple), pages 1825-1832, December.
    13. Brian C. H. Steele & Angelika Heinzel, 2001. "Materials for fuel-cell technologies," Nature, Nature, vol. 414(6861), pages 345-352, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxiao Qin & Li Sun & Qingsong Hua & Ping Liu, 2018. "A Fuzzy Adaptive PID Controller Design for Fuel Cell Power Plant," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    2. Takaya Ogawa & Mizutomo Takeuchi & Yuya Kajikawa, 2018. "Analysis of Trends and Emerging Technologies in Water Electrolysis Research Based on a Computational Method: A Comparison with Fuel Cell Research," Sustainability, MDPI, vol. 10(2), pages 1-24, February.
    3. Mejia, Cristian & Kajikawa, Yuya, 2020. "Emerging topics in energy storage based on a large-scale analysis of academic articles and patents," Applied Energy, Elsevier, vol. 263(C).
    4. Xuan Shi & Lingfei Cai & Junzhi Jia, 2018. "The Evolution of International Scientific Collaboration in Fuel Cells during 1998–2017: A Social Network Perspective," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
    5. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    6. Muneeb Irshad & Mehak Khalid & Muhammad Rafique & Asif Nadeem Tabish & Ahmad Shakeel & Khurram Siraj & Abdul Ghaffar & Rizwan Raza & Muhammad Ahsan & Quar tul Ain & Qurat ul Ain, 2021. "Electrochemical Investigations of BaCe 0.7-x Sm x Zr 0.2 Y 0.1 O 3-δ Sintered at a Low Sintering Temperature as a Perovskite Electrolyte for IT-SOFCs," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    7. Yuya Kajikawa, 2022. "Reframing evidence in evidence-based policy making and role of bibliometrics: toward transdisciplinary scientometric research," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5571-5585, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takaya Ogawa & Mizutomo Takeuchi & Yuya Kajikawa, 2018. "Analysis of Trends and Emerging Technologies in Water Electrolysis Research Based on a Computational Method: A Comparison with Fuel Cell Research," Sustainability, MDPI, vol. 10(2), pages 1-24, February.
    2. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    3. Bernd Frick & Franziska Prockl, 2018. "Information Precision In Online Communities: Player Valuations On Www.Transfermarkt.De," Working Papers Dissertations 37, Paderborn University, Faculty of Business Administration and Economics.
    4. Stefan N. Groesser & Niklas Jovy, 2016. "Business model analysis using computational modeling: a strategy tool for exploration and decision-making," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 27(1), pages 61-88, February.
    5. Ad van den Oord & Arjen van Witteloostuijn, 2018. "A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-27, May.
    6. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    7. Yogesh V. Joshi & David J. Reibstein & Z. John Zhang, 2009. "Optimal Entry Timing in Markets with Social Influence," Management Science, INFORMS, vol. 55(6), pages 926-939, June.
    8. Amini, Mehdi & Li, Haitao, 2011. "Supply chain configuration for diffusion of new products: An integrated optimization approach," Omega, Elsevier, vol. 39(3), pages 313-322, June.
    9. Guo, Xuezhen, 2014. "A novel Bass-type model for product life cycle quantification using aggregate market data," International Journal of Production Economics, Elsevier, vol. 158(C), pages 208-216.
    10. Stone, Glenn Davis & Flachs, Andrew & Diepenbrock, Christine, 2014. "Rhythms of the herd: Long term dynamics in seed choice by Indian farmers," Technology in Society, Elsevier, vol. 36(C), pages 26-38.
    11. Massiani, Jérôme, 2015. "Cost-Benefit Analysis of policies for the development of electric vehicles in Germany: Methods and results," Transport Policy, Elsevier, vol. 38(C), pages 19-26.
    12. J�r�me Massiani, 2013. "The use of Stated Preferences to forecast alternative fuel vehicles market diffusion: Comparisons with other methods and proposal for a Synthetic Utility Function," Working Papers 2013:12, Department of Economics, University of Venice "Ca' Foscari".
    13. Yang Liu and Taoyuan Wei, 2016. "Market and Non-market Policies for Renewable Energy Diffusion: A Unifying Framework and Empirical Evidence from Chinas Wind Power Sector," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    14. Wenjing Shen & Izak Duenyas & Roman Kapuscinski, 2014. "Optimal Pricing, Production, and Inventory for New Product Diffusion Under Supply Constraints," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 28-45, February.
    15. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    16. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
    17. Mehmet R. Taner & Bahar Y. Kara, 2016. "Endogenous Effects of Hubbing on Flow Intensities," Networks and Spatial Economics, Springer, vol. 16(4), pages 1151-1181, December.
    18. Gary Biglaiser & Jacques Crémer & André Veiga, 2020. "Migration between Platforms," CESifo Working Paper Series 8185, CESifo.
    19. Sharad Goel & Ashton Anderson & Jake Hofman & Duncan J. Watts, 2016. "The Structural Virality of Online Diffusion," Management Science, INFORMS, vol. 62(1), pages 180-196, January.
    20. Bi-Huei Tsai & Yiming Li, 2011. "Modelling competition in global LCD TV industry," Applied Economics, Taylor & Francis Journals, vol. 43(22), pages 2969-2981.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:458-:d:131095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.