IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4663-d188786.html
   My bibliography  Save this article

Performance Analysis and Improvement of the Bike Sharing System Using Closed Queuing Networks with Blocking Mechanism

Author

Listed:
  • Bacem Samet

    (Quartz laboratory, Supmeca, 3 Rue Fernand Hainaut, 93407 Saint-Ouen, France
    LA2MP, National School of Engineers of Sfax (ENIS), Route Soukra Km 3.5, B.P. 1173, Sfax 3038, Tunisia)

  • Florent Couffin

    (Quartz laboratory, Supmeca, 3 Rue Fernand Hainaut, 93407 Saint-Ouen, France)

  • Marc Zolghadri

    (Quartz laboratory, Supmeca, 3 Rue Fernand Hainaut, 93407 Saint-Ouen, France)

  • Maher Barkallah

    (LA2MP, National School of Engineers of Sfax (ENIS), Route Soukra Km 3.5, B.P. 1173, Sfax 3038, Tunisia)

  • Mohamed Haddar

    (LA2MP, National School of Engineers of Sfax (ENIS), Route Soukra Km 3.5, B.P. 1173, Sfax 3038, Tunisia)

Abstract

The Bike Sharing System is a sustainable urban transport solution that consists of a fleet of bikes placed in various stations. Users will be satisfied if they find available bikes at their departure station and free docks at the destination. Despite the regulation operations of the system provider (i.e., redistribution of bikes by truck) deeper modifications (bike fleet size or station capacity) are often necessary to ensure a satisfactory service rate. In this paper, we model a sub-graph of a Bike Sharing System using the closed queuing network with a Repetitive-Service-Random-Destination blocking mechanism. This model is solved using the Maximum Entropy Method. This model faithfully reproduces the system dynamics considering the limited capacity of stations. We analyze the performance, particularly, via an overall performance indicator of the system. The various control and monitoring decisions (fleet-size, capacity of stations, incoming and outgoing flow of bikes) are applied to find out the best performance levels. The results demonstrate that the overall performance is robust enough regarding the fleet size changes but it degrades with the increase of the stations’ capacity. Finally, the arrival and departure flows control is an efficient and powerful operational leverage.

Suggested Citation

  • Bacem Samet & Florent Couffin & Marc Zolghadri & Maher Barkallah & Mohamed Haddar, 2018. "Performance Analysis and Improvement of the Bike Sharing System Using Closed Queuing Networks with Blocking Mechanism," Sustainability, MDPI, vol. 10(12), pages 1-26, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4663-:d:188786
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4663/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4663/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    2. Jiménez, Pilar & Nogal, María & Caulfield, Brian & Pilla, Francesco, 2016. "Perceptually important points of mobility patterns to characterise bike sharing systems: The Dublin case," Journal of Transport Geography, Elsevier, vol. 54(C), pages 228-239.
    3. Linfeng Li & Miyuan Shan & Ying Li & Sheng Liang, 2017. "A Dynamic Programming Model for Operation Decision-Making in Bicycle Sharing Systems under a Sustainable Development Perspective," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    4. Linfeng Li & Miyuan Shan, 2016. "Bidirectional Incentive Model for Bicycle Redistribution of a Bicycle Sharing System during Rush Hour," Sustainability, MDPI, vol. 8(12), pages 1-15, December.
    5. George, David K. & Xia, Cathy H., 2011. "Fleet-sizing and service availability for a vehicle rental system via closed queueing networks," European Journal of Operational Research, Elsevier, vol. 211(1), pages 198-207, May.
    6. Jian-gang Shi & Hongyun Si & Guangdong Wu & Yangyue Su & Jing Lan, 2018. "Critical Factors to Achieve Dockless Bike-Sharing Sustainability in China: A Stakeholder-Oriented Network Perspective," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    7. Christine Fricker & Nicolas Servel, 2016. "Two-choice regulation in heterogeneous closed networks," Queueing Systems: Theory and Applications, Springer, vol. 82(1), pages 173-197, February.
    8. Mingyang Du & Lin Cheng, 2018. "Better Understanding the Characteristics and Influential Factors of Different Travel Patterns in Free-Floating Bike Sharing: Evidence from Nanjing, China," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William A. Massey & Emmanuel Ekwedike & Robert C. Hampshire & Jamol J. Pender, 2023. "A transient symmetry analysis for the M/M/1/k queue," Queueing Systems: Theory and Applications, Springer, vol. 103(1), pages 1-43, February.
    2. Mohamed Amjath & Laoucine Kerbache & James MacGregor Smith, 2024. "A Closed Queueing Networks Approach for an Optimal Heterogeneous Fleet Size of an Inter-Facility Bulk Material Transfer System," Logistics, MDPI, vol. 8(1), pages 1-38, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianjian Yang & Ye Li & Simin Zhou, 2019. "System Dynamics Modeling of Dockless Bike-Sharing Program Operations: A Case Study of Mobike in Beijing, China," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    2. Ruijing Wu & Shaoxuan Liu & Zhenyang Shi, 2019. "Customer Incentive Rebalancing Plan in Free-Float Bike-Sharing System with Limited Information," Sustainability, MDPI, vol. 11(11), pages 1-24, May.
    3. Tomasz Bieliński & Agnieszka Kwapisz & Agnieszka Ważna, 2019. "Bike-Sharing Systems in Poland," Sustainability, MDPI, vol. 11(9), pages 1-14, April.
    4. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    5. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    6. Hao, Wu & Martin, Layla, 2022. "Prohibiting cherry-picking: Regulating vehicle sharing services who determine fleet and service structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    7. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    8. Muhammad Usama & Yongjun Shen & Onaira Zahoor, 2019. "Towards an Energy Efficient Solution for Bike-Sharing Rebalancing Problems: A Battery Electric Vehicle Scenario," Energies, MDPI, vol. 12(13), pages 1-21, June.
    9. Yuan Li & Zhenjun Zhu & Xiucheng Guo, 2019. "Operating Characteristics of Dockless Bike-Sharing Systems near Metro Stations: Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    10. Quan-Lin Li & Rui-Na Fan, 2022. "A mean-field matrix-analytic method for bike sharing systems under Markovian environment," Annals of Operations Research, Springer, vol. 309(2), pages 517-551, February.
    11. Xinwei Ma & Ruiming Cao & Jianbiao Wang, 2019. "Effects of Psychological Factors on Modal Shift from Car to Dockless Bike Sharing: A Case Study of Nanjing, China," IJERPH, MDPI, vol. 16(18), pages 1-16, September.
    12. Legros, Benjamin, 2019. "Dynamic repositioning strategy in a bike-sharing system; how to prioritize and how to rebalance a bike station," European Journal of Operational Research, Elsevier, vol. 272(2), pages 740-753.
    13. Gilbert Laporte & Frédéric Meunier & Roberto Wolfler Calvo, 2018. "Shared mobility systems: an updated survey," Annals of Operations Research, Springer, vol. 271(1), pages 105-126, December.
    14. Han, Sun Sheng, 2020. "The spatial spread of dockless bike-sharing programs among Chinese cities," Journal of Transport Geography, Elsevier, vol. 86(C).
    15. Si, Hongyun & Su, Yangyue & Wu, Guangdong & Liu, Bingsheng & Zhao, Xianbo, 2020. "Understanding bike-sharing users’ willingness to participate in repairing damaged bicycles: Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 203-220.
    16. Santiago R. Balseiro & David B. Brown & Chen Chen, 2021. "Dynamic Pricing of Relocating Resources in Large Networks," Management Science, INFORMS, vol. 67(7), pages 4075-4094, July.
    17. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    18. Yi, Wenjing & Yan, Jie, 2020. "Energy consumption and emission influences from shared mobility in China: A national level annual data analysis," Applied Energy, Elsevier, vol. 277(C).
    19. Wagner, Sebastian & Brandt, Tobias & Neumann, Dirk, 2016. "In free float: Developing Business Analytics support for carsharing providers," Omega, Elsevier, vol. 59(PA), pages 4-14.
    20. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4663-:d:188786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.