IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v82y2016i1d10.1007_s11134-015-9465-7.html
   My bibliography  Save this article

Two-choice regulation in heterogeneous closed networks

Author

Listed:
  • Christine Fricker

    (INRIA Paris-Rocquencourt)

  • Nicolas Servel

    (INRIA Paris-Rocquencourt)

Abstract

A heterogeneous closed network with N one-server queues with finite capacity and one infinite-server queue is studied. A target application is bike-sharing systems. Heterogeneity is taken into account through clusters queues of which have the same parameters. Incentives to the customer to go to the least-loaded one-server queue between two chosen within a cluster are investigated. By mean-field arguments, the limiting queue length stationary distribution as N gets large is analytically tractable. Moreover, when all customers follow incentives, the probability that a queue is empty or full is approximated. Sizing the system to improve performance is achievable under this policy.

Suggested Citation

  • Christine Fricker & Nicolas Servel, 2016. "Two-choice regulation in heterogeneous closed networks," Queueing Systems: Theory and Applications, Springer, vol. 82(1), pages 173-197, February.
  • Handle: RePEc:spr:queues:v:82:y:2016:i:1:d:10.1007_s11134-015-9465-7
    DOI: 10.1007/s11134-015-9465-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-015-9465-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-015-9465-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tal Raviv & Ofer Kolka, 2013. "Optimal inventory management of a bike-sharing station," IISE Transactions, Taylor & Francis Journals, vol. 45(10), pages 1077-1093.
    2. Jonatha Anselmi & Bernardo D'Auria & Neil Walton, 2013. "Closed Queueing Networks Under Congestion: Nonbottleneck Independence and Bottleneck Convergence," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 469-491, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Legros, Benjamin, 2019. "Dynamic repositioning strategy in a bike-sharing system; how to prioritize and how to rebalance a bike station," European Journal of Operational Research, Elsevier, vol. 272(2), pages 740-753.
    2. Quan-Lin Li & Rui-Na Fan, 2022. "A mean-field matrix-analytic method for bike sharing systems under Markovian environment," Annals of Operations Research, Springer, vol. 309(2), pages 517-551, February.
    3. Bacem Samet & Florent Couffin & Marc Zolghadri & Maher Barkallah & Mohamed Haddar, 2018. "Performance Analysis and Improvement of the Bike Sharing System Using Closed Queuing Networks with Blocking Mechanism," Sustainability, MDPI, vol. 10(12), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stokkink, Patrick & Geroliminis, Nikolas, 2021. "Predictive user-based relocation through incentives in one-way car-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 230-249.
    2. Yongji Jia & Wang Zeng & Yanting Xing & Dong Yang & Jia Li, 2020. "The Bike-Sharing Rebalancing Problem Considering Multi-Energy Mixed Fleets and Traffic Restrictions," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    3. Christine Fricker & Nicolas Gast, 2016. "Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 261-291, August.
    4. Rajendran, Suchithra & Srinivas, Sharan & Grimshaw, Trenton, 2021. "Predicting demand for air taxi urban aviation services using machine learning algorithms," Journal of Air Transport Management, Elsevier, vol. 92(C).
    5. Daniel Freund & Shane G. Henderson & Eoin O’Mahony & David B. Shmoys, 2019. "Analytics and Bikes: Riding Tandem with Motivate to Improve Mobility," Interfaces, INFORMS, vol. 49(5), pages 310-323, September.
    6. Nourinejad, Mehdi & Zhu, Sirui & Bahrami, Sina & Roorda, Matthew J., 2015. "Vehicle relocation and staff rebalancing in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 98-113.
    7. Regue, Robert & Recker, Will, 2014. "Proactive vehicle routing with inferred demand to solve the bikesharing rebalancing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 192-209.
    8. J. Christopher Westland & Jian Mou & Dafei Yin, 2018. "Prediction of Shared Bicycle Demand with Wavelet Thresholding," Papers 1802.02683, arXiv.org.
    9. Muren, & Li, Hao & Mukhopadhyay, Samar K. & Wu, Jian-jun & Zhou, Li & Du, Zhiping, 2020. "Balanced maximal covering location problem and its application in bike-sharing," International Journal of Production Economics, Elsevier, vol. 223(C).
    10. Zhang, Jie & Meng, Meng & Wong, Yiik Diew & Ieromonachou, Petros & Wang, David Z.W., 2021. "A data-driven dynamic repositioning model in bicycle-sharing systems," International Journal of Production Economics, Elsevier, vol. 231(C).
    11. VERGEYLEN, Nicholas & SÖRENSEN, Kenneth & PALHAZI CUERVO, Daniel, 2018. "Solution space analysis for the bike request scheduling problem," Working Papers 2018005, University of Antwerp, Faculty of Business and Economics.
    12. Osorio, Jesus & Lei, Chao & Ouyang, Yanfeng, 2021. "Optimal rebalancing and on-board charging of shared electric scooters," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 197-219.
    13. Lv, Chang & Zhang, Chaoyong & Lian, Kunlei & Ren, Yaping & Meng, Leilei, 2020. "A hybrid algorithm for the static bike-sharing re-positioning problem based on an effective clustering strategy," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 1-21.
    14. Liang Gao & Wei Xu & Yifeng Duan, 2019. "Dynamic Scheduling Based on Predicted Inventory Variation Rate for Public Bicycle System," Sustainability, MDPI, vol. 11(7), pages 1-11, March.
    15. Perez Becker, Nicole & Arts, Joachim & Reichardt, Sven & Lange, Anne, 2024. "Managing inventories of reusable containers for food take-away at a restaurant," International Journal of Production Economics, Elsevier, vol. 267(C).
    16. Quan-Lin Li & Rui-Na Fan, 2022. "A mean-field matrix-analytic method for bike sharing systems under Markovian environment," Annals of Operations Research, Springer, vol. 309(2), pages 517-551, February.
    17. Stanislav Kubaľák & Alica Kalašová & Ambróz Hájnik, 2021. "The Bike-Sharing System in Slovakia and the Impact of COVID-19 on This Shared Mobility Service in a Selected City," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    18. Frade, Ines & Ribeiro, Anabela, 2015. "Bike-sharing stations: A maximal covering location approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 216-227.
    19. Maury Bramson & Bernardo D’Auria & Neil Walton, 2017. "Proportional Switching in First-in, First-out Networks," Operations Research, INFORMS, vol. 65(2), pages 496-513, April.
    20. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2016. "Bike-share rebalancing strategies, patterns, and purpose," Journal of Transport Geography, Elsevier, vol. 55(C), pages 22-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:82:y:2016:i:1:d:10.1007_s11134-015-9465-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.