IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v211y2011i1p198-207.html
   My bibliography  Save this article

Fleet-sizing and service availability for a vehicle rental system via closed queueing networks

Author

Listed:
  • George, David K.
  • Xia, Cathy H.

Abstract

In this paper, we address the problem of determining the optimal fleet size for a vehicle rental company and derive analytical results for its relationship to vehicle availability at each rental station in the company's network of locations. This work is motivated by the recent surge in interest for bicycle and electric car sharing systems, one example being the French program Vélib (2010). We first formulate a closed queueing network model of the system, obtained by viewing the system from the vehicle's perspective. Using this framework, we are able to derive the asymptotic behavior of vehicle availability at an arbitrary rental station with respect to fleet size. These results allow us to analyze imbalances in the system and propose some basic principles for the design of system balancing methods. We then develop a profit-maximizing optimization problem for determining optimal fleet size. The large-scale nature of real-world systems results in computational difficulties in obtaining this exact solution, and so we provide an approximate formulation that is easier to solve and which becomes exact as the fleet size becomes large. To illustrate our findings and validate our solution methods, we provide numerical results on some sample networks.

Suggested Citation

  • George, David K. & Xia, Cathy H., 2011. "Fleet-sizing and service availability for a vehicle rental system via closed queueing networks," European Journal of Operational Research, Elsevier, vol. 211(1), pages 198-207, May.
  • Handle: RePEc:eee:ejores:v:211:y:2011:i:1:p:198-207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00881-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George J. Beaujon & Mark A. Turnquist, 1991. "A Model for Fleet Sizing and Vehicle Allocation," Transportation Science, INFORMS, vol. 25(1), pages 19-45, February.
    2. Hamid Sayarshad & Nikbakhsh Javadian & Reza Tavakkoli-Moghaddam & Nastaran Forghani, 2010. "Solving multi-objective optimization formulation for fleet planning in a railway industry," Annals of Operations Research, Springer, vol. 181(1), pages 185-197, December.
    3. Warren B. Powell & Tassio A. Carvalho, 1998. "Dynamic Control of Logistics Queueing Networks for Large-Scale Fleet Management," Transportation Science, INFORMS, vol. 32(2), pages 90-109, May.
    4. Hall, Randolph W. & Zhong, Hongsheng, 2002. "Decentralized inventory control policies for equipment management in a many-to-many network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(10), pages 849-865, December.
    5. Daniel Adelman, 2007. "Price-Directed Control of a Closed Logistics Queueing Network," Operations Research, INFORMS, vol. 55(6), pages 1022-1038, December.
    6. William C. Jordan & Mark A. Turnquist, 1983. "A Stochastic, Dynamic Network Model for Railroad Car Distribution," Transportation Science, INFORMS, vol. 17(2), pages 123-145, May.
    7. Yafeng Du & Randolph Hall, 1997. "Fleet Sizing and Empty Equipment Redistribution for Center-Terminal Transportation Networks," Management Science, INFORMS, vol. 43(2), pages 145-157, February.
    8. S. C. Parikh, 1977. "On a Fleet Sizing and Allocation Problem," Management Science, INFORMS, vol. 23(9), pages 972-977, May.
    9. Dong, Jing-Xin & Song, Dong-Ping, 2009. "Container fleet sizing and empty repositioning in liner shipping systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(6), pages 860-877, November.
    10. Linos F. Frantzeskakis & Warren B. Powell, 1990. "A Successive Linear Approximation Procedure for Stochastic, Dynamic Vehicle Allocation Problems," Transportation Science, INFORMS, vol. 24(1), pages 40-57, February.
    11. Song, Dong-Ping & Earl, Christopher F., 2008. "Optimal empty vehicle repositioning and fleet-sizing for two-depot service systems," European Journal of Operational Research, Elsevier, vol. 185(2), pages 760-777, March.
    12. J. George Shanthikumar & David D. Yao, 1988. "Second-Order Properties of the Throughput of a Closed Queueing Network," Mathematics of Operations Research, INFORMS, vol. 13(3), pages 524-534, August.
    13. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, II: Multiperiod Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 40-54, February.
    14. Kochel, Peter & Kunze, Sophie & Nielander, Ulf, 2003. "Optimal control of a distributed service system with moving resources: Application to the fleet sizing and allocation problem," International Journal of Production Economics, Elsevier, vol. 81(1), pages 443-459, January.
    15. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, I: Single Period Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 21-39, February.
    16. Ernest Koenigsberg & Richard C. Lam, 1976. "Cyclic Queue Models of Fleet Operations," Operations Research, INFORMS, vol. 24(3), pages 516-529, June.
    17. Huseyin Topaloglu & Warren B. Powell, 2006. "Dynamic-Programming Approximations for Stochastic Time-Staged Integer Multicommodity-Flow Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 31-42, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix Papier & Ulrich W. Thonemann, 2008. "Queuing Models for Sizing and Structuring Rental Fleets," Transportation Science, INFORMS, vol. 42(3), pages 302-317, August.
    2. Dong‐Ping Song & Jonathan Carter, 2008. "Optimal empty vehicle redistribution for hub‐and‐spoke transportation systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(2), pages 156-171, March.
    3. D-P Song, 2007. "Characterizing optimal empty container reposition policy in periodic-review shuttle service systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 122-133, January.
    4. Kallrath, J. & Klosterhalfen, S.T. & Walter, M. & Fischer, G. & Blackburn, R., 2017. "Payload-based fleet optimization for rail cars in the chemical industry," European Journal of Operational Research, Elsevier, vol. 259(1), pages 113-129.
    5. Bojovic, Nebojsa J., 2002. "A general system theory approach to rail freight car fleet sizing," European Journal of Operational Research, Elsevier, vol. 136(1), pages 136-172, January.
    6. G J King & H Topaloglu, 2007. "Incorporating the pricing decisions into the dynamic fleet management problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(8), pages 1065-1074, August.
    7. Milenković, Miloš S. & Bojović, Nebojša J. & Švadlenka, Libor & Melichar, Vlastimil, 2015. "A stochastic model predictive control to heterogeneous rail freight car fleet sizing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 162-198.
    8. José Carbajal & Alan Erera & Martin Savelsbergh, 2013. "Balancing fleet size and repositioning costs in LTL trucking," Annals of Operations Research, Springer, vol. 203(1), pages 235-254, March.
    9. Kochel, Peter & Kunze, Sophie & Nielander, Ulf, 2003. "Optimal control of a distributed service system with moving resources: Application to the fleet sizing and allocation problem," International Journal of Production Economics, Elsevier, vol. 81(1), pages 443-459, January.
    10. Kochel, P., 2007. "Order optimisation in multi-location models with hub-and-spoke structure," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 368-387, July.
    11. Luke Schenk & Diego Klabjan, 2008. "Intramarket Optimization for Express Package Carriers," Transportation Science, INFORMS, vol. 42(4), pages 530-545, November.
    12. Song, Dong-Ping & Dong, Jing-Xin, 2011. "Effectiveness of an empty container repositioning policy with flexible destination ports," Transport Policy, Elsevier, vol. 18(1), pages 92-101, January.
    13. Song, Dong-Ping & Earl, Christopher F., 2008. "Optimal empty vehicle repositioning and fleet-sizing for two-depot service systems," European Journal of Operational Research, Elsevier, vol. 185(2), pages 760-777, March.
    14. Hamid Sayarshad & Nikbakhsh Javadian & Reza Tavakkoli-Moghaddam & Nastaran Forghani, 2010. "Solving multi-objective optimization formulation for fleet planning in a railway industry," Annals of Operations Research, Springer, vol. 181(1), pages 185-197, December.
    15. Gregory A. Godfrey & Warren B. Powell, 2002. "An Adaptive Dynamic Programming Algorithm for Dynamic Fleet Management, I: Single Period Travel Times," Transportation Science, INFORMS, vol. 36(1), pages 21-39, February.
    16. Warren B. Powell, 2016. "Perspectives of approximate dynamic programming," Annals of Operations Research, Springer, vol. 241(1), pages 319-356, June.
    17. Peiling Wu & Joseph C. Hartman & George R. Wilson, 2005. "An Integrated Model and Solution Approach for Fleet Sizing with Heterogeneous Assets," Transportation Science, INFORMS, vol. 39(1), pages 87-103, February.
    18. Zolfagharinia, Hossein & Haughton, Michael, 2018. "The importance of considering non-linear layover and delay costs for local truckers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 331-355.
    19. Klosterhalfen, S.T. & Kallrath, J. & Fischer, G., 2014. "Rail car fleet design: Optimization of structure and size," International Journal of Production Economics, Elsevier, vol. 157(C), pages 112-119.
    20. Dong-Ping Song & Qing Zhang, 2011. "Optimal Inventory Control for Empty Containers in a Port with Random Demands and Repositioning Delays," Chapters, in: Kevin Cullinane (ed.), International Handbook of Maritime Economics, chapter 14, Edward Elgar Publishing.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:211:y:2011:i:1:p:198-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.