IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4604-d188103.html
   My bibliography  Save this article

Spatial-Temporal Changes of Soil Respiration across China and the Response to Land Cover and Climate Change

Author

Listed:
  • Jiqun Wen

    (School of Public Management, Guangdong University of Finance & Economics, Guangzhou 510320, China)

  • Xiaowei Chuai

    (School of Geography & Ocean Sciences, Nanjing University, Nanjing 210023, China)

  • Shanchi Li

    (Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou 510405, China)

  • Song Song

    (School of Geographical Science, Guangzhou University, Guangzhou 510006, China)

  • Jiasheng Li

    (School of Geography & Ocean Sciences, Nanjing University, Nanjing 210023, China)

  • Xiaomin Guo

    (School of Geography & Ocean Sciences, Nanjing University, Nanjing 210023, China)

  • Lei Yang

    (School of Public Management, Guangdong University of Finance & Economics, Guangzhou 510320, China)

Abstract

Soil respiration (Rs) plays an important role in the carbon budget of terrestrial ecosystems. Quantifying the spatial and temporal variations in Rs in China at the regional scale helps improve our understanding of the variations in terrestrial carbon budgets that occur in response to global climate and environmental changes and potential future control measures. In this study, we used a regional-scale geostatistical model that incorporates gridded meteorological and pedologic data to evaluate the spatial Rs variations in China from 2000 to 2013. We analysed the relationship between Rs and environmental factors, and suggest management strategies that may help to keep the terrestrial carbon balance. The simulated results demonstrate that the mean annual Rs value over these 14 years was 422 g/m 2 /year, and the corresponding total amount was 4.01 Pg C/year. The Rs estimation displayed a clear spatial pattern and a slightly increasing trend. Further analysis also indicated that high Rs values may occur in areas that show a greater degree of synchronicity in the timing of their optimal temperature and moisture conditions. Moreover, cultivated vegetation exhibits higher Rs values than native vegetation. Finally, we suggest that specific conservation efforts should be focused on ecologically sensitive areas where the Rs values increase significantly.

Suggested Citation

  • Jiqun Wen & Xiaowei Chuai & Shanchi Li & Song Song & Jiasheng Li & Xiaomin Guo & Lei Yang, 2018. "Spatial-Temporal Changes of Soil Respiration across China and the Response to Land Cover and Climate Change," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4604-:d:188103
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hashimoto, Shoji & Morishita, Tomoaki & Sakata, Tadashi & Ishizuka, Shigehiro & Kaneko, Shinji & Takahashi, Masamichi, 2011. "Simple models for soil CO2, CH4, and N2O fluxes calibrated using a Bayesian approach and multi-site data," Ecological Modelling, Elsevier, vol. 222(7), pages 1283-1292.
    2. Mingkui Cao & F. Ian Woodward, 1998. "Dynamic responses of terrestrial ecosystem carbon cycling to global climate change," Nature, Nature, vol. 393(6682), pages 249-252, May.
    3. Ben Bond-Lamberty & Allison Thomson, 2010. "Temperature-associated increases in the global soil respiration record," Nature, Nature, vol. 464(7288), pages 579-582, March.
    4. Russell K. Monson & David L. Lipson & Sean P. Burns & Andrew A. Turnipseed & Anthony C. Delany & Mark W. Williams & Steven K. Schmidt, 2006. "Winter forest soil respiration controlled by climate and microbial community composition," Nature, Nature, vol. 439(7077), pages 711-714, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yueyue & Ma, Xiangcheng & Wang, Yingxin & Ali, Shahzad & Cai, Tie & Jia, Zhikuan, 2020. "Effects of ridge-furrow mulching system with supplementary irrigation on soil respiration in winter wheat fields under different rainfall conditions," Agricultural Water Management, Elsevier, vol. 239(C).
    2. Li, Jiasheng & Guo, Xiaomin & Chuai, Xiaowei & Xie, Fangjian & Yang, Feng & Gao, Runyi & Ji, Xuepeng, 2021. "Reexamine China’s terrestrial ecosystem carbon balance under land use-type and climate change," Land Use Policy, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lychuk, Taras E. & Hill, Robert L. & Izaurralde, Roberto C. & Momen, Bahram & Thomson, Allison M., 2021. "Evaluation of climate change impacts and effectiveness of adaptation options on nitrate loss, microbial respiration, and soil organic carbon in the Southeastern USA," Agricultural Systems, Elsevier, vol. 193(C).
    2. Govind, Ajit & Chen, Jing Ming & Bernier, Pierre & Margolis, Hank & Guindon, Luc & Beaudoin, Andre, 2011. "Spatially distributed modeling of the long-term carbon balance of a boreal landscape," Ecological Modelling, Elsevier, vol. 222(15), pages 2780-2795.
    3. Agnė Buivydienė & Irena Deveikytė & Agnė Veršulienė & Virginijus Feiza, 2024. "The Influence of Cropping Systems and Tillage Intensity on Soil CO 2 Exchange Rate," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
    4. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    5. John Reilly & David Schimmelpfennig, 2000. "Irreversibility, Uncertainty, and Learning: Portraits of Adaptation to Long-Term Climate Change," Climatic Change, Springer, vol. 45(1), pages 253-278, April.
    6. Klaus Keller & Kelvin Tan & Francois M.M. Morel & David F. Bradford, 1999. "Preserving the Ocean Circulation: Implications for Climate Policy," CESifo Working Paper Series 199, CESifo.
    7. Huitao Shen & Tao Zhang & Yanxia Zhao & Aibin Wu & Zhenhua Zheng & Jiansheng Cao, 2023. "Effects of Precipitation Variation on Annual and Winter Soil Respiration in a Semiarid Mountain Shrubland in Northern China," Sustainability, MDPI, vol. 15(9), pages 1-13, May.
    8. M. Jonas & S. Nilsson & A. Shvidenko & V. Stolbovoi & M. Gluck & M. Obersteiner & A. Oeskog, 1999. "Full Carbon Accounting and the Kyoto Protocol: A Systems- Analytical View," Working Papers ir99025, International Institute for Applied Systems Analysis.
    9. Nguyen Van Hiep & Nguyen Thi Thanh Thao & Luong Van Viet & Huynh Cong Luc & Le Huy Ba, 2023. "Affecting of Nature and Human Activities on the Trend of Vegetation Health Indices in Dak Nong Province, Vietnam," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    10. Li Yu & Fengxue Gu & Mei Huang & Bo Tao & Man Hao & Zhaosheng Wang, 2020. "Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China’s Terrestrial Ecosystems," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    11. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    12. Liu, Min & He, Honglin & Ren, Xiaoli & Sun, Xiaomin & Yu, Guirui & Han, Shijie & Wang, Huimin & Zhou, Guoyi, 2015. "The effects of constraining variables on parameter optimization in carbon and water flux modeling over different forest ecosystems," Ecological Modelling, Elsevier, vol. 303(C), pages 30-41.
    13. Jinshi Jian & Vanessa Bailey & Kalyn Dorheim & Alexandra G. Konings & Dalei Hao & Alexey N. Shiklomanov & Abigail Snyder & Meredith Steele & Munemasa Teramoto & Rodrigo Vargas & Ben Bond-Lamberty, 2022. "Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Zhang, Yan & Li, Juan & Fath, Brian D. & Zheng, Hongmei & Xia, Linlin, 2015. "Analysis of urban carbon metabolic processes and a description of sectoral characteristics: A case study of Beijing," Ecological Modelling, Elsevier, vol. 316(C), pages 144-154.
    15. Matthew Chard & Kris French & John Martin & Richard E Major, 2018. "Rain drives foraging decisions of an urban exploiter," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-14, April.
    16. Bo Song & Zhixiang Wu & Lu Dong & Chuan Yang & Siqi Yang, 2023. "Variation of Stem CO 2 Efflux and Estimation of Its Contribution to the Ecosystem Respiration in an Even-Aged Pure Rubber Plantation of Hainan Island," Sustainability, MDPI, vol. 15(22), pages 1-15, November.
    17. Xue Chen & Haibo Hu & Qi Wang & Xia Wang & Bing Ma, 2024. "Exploring the Factors Affecting Terrestrial Soil Respiration in Global Warming Manipulation Experiments Based on Meta-Analysis," Agriculture, MDPI, vol. 14(9), pages 1-15, September.
    18. Xu Yang & Dongsheng Chu & Haibo Hu & Wenbin Deng & Jianyu Chen & Shaojun Guo, 2024. "Effects of Land-Use Type and Salinity on Soil Carbon Mineralization in Coastal Areas of Northern Jiangsu Province," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    19. Imam Basuki & J. B. Kauffman & James Peterson & Gusti Anshari & Daniel Murdiyarso, 2019. "Land cover changes reduce net primary production in tropical coastal peatlands of West Kalimantan, Indonesia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(4), pages 557-573, April.
    20. Xiuxue Chen & Xiaofeng Li & Lingjia Gu & Xingming Zheng & Guangrui Wang & Lei Li, 2021. "Increasing Snow–Soil Interface Temperature in Farmland of Northeast China from 1979 to 2018," Agriculture, MDPI, vol. 11(9), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4604-:d:188103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.