IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_199.html
   My bibliography  Save this paper

Preserving the Ocean Circulation: Implications for Climate Policy

Author

Listed:
  • Klaus Keller
  • Kelvin Tan
  • Francois M.M. Morel
  • David F. Bradford

Abstract

Climate modelers have recognized the possibility of abrupt climate changes caused by a reorganization of the North Atlantic's current pattern (technically known as a thermohaline circulation collapse). This circulation system now warms north-western Europe and transports carbon dioxide to the deep oceans. The posited collapse of this system could produce severe cooling in north-western Europe, even when general global warming is in progress. In this paper we use a simple integrated assessment model to investigate the optimal policy response to this risk. Adding the constraint of avoiding a thermohaline circulation collapse would significantly reduce the allowable greenhouse gas emissio ns in the long run along an otimal path. Our analysis implies that relatively small damages associated with a collapse (less than 1% of gross world product) would justify a considerable reduction of future carbon dioxide emissions.

Suggested Citation

  • Klaus Keller & Kelvin Tan & Francois M.M. Morel & David F. Bradford, 1999. "Preserving the Ocean Circulation: Implications for Climate Policy," CESifo Working Paper Series 199, CESifo.
  • Handle: RePEc:ces:ceswps:_199
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo_wp199.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David F. Bradford, 1997. "On the Uses of Benefit-Cost Reasoning in Choosing Policy Toward Global Climate Change," NBER Working Papers 5920, National Bureau of Economic Research, Inc.
    2. Maddison, David, 1995. "A cost-benefit analysis of slowing climate change," Energy Policy, Elsevier, vol. 23(4-5), pages 337-346.
    3. Roughgarden, Tim & Schneider, Stephen H., 1999. "Climate change policy: quantifying uncertainties for damages and optimal carbon taxes," Energy Policy, Elsevier, vol. 27(7), pages 415-429, July.
    4. Mingkui Cao & F. Ian Woodward, 1998. "Dynamic responses of terrestrial ecosystem carbon cycling to global climate change," Nature, Nature, vol. 393(6682), pages 249-252, May.
    5. William D. Nordhaus & David Popp, 1997. "What is the Value of Scientific Knowledge? An Application to Global Warming Using the PRICE Model," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-45.
    6. M. Ha-Duong & M. J. Grubb & J.-C. Hourcade, 1997. "Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement," Nature, Nature, vol. 390(6657), pages 270-273, November.
    7. Costanza, Robert & d'Arge, Ralph & de Groot, Rudolf & Farber, Stephen & Grasso, Monica & Hannon, Bruce & Limburg, Karin & Naeem, Shahid & O'Neill, Robert V. & Paruelo, Jose, 1998. "The value of the world's ecosystem services and natural capital," Ecological Economics, Elsevier, vol. 25(1), pages 3-15, April.
    8. Manne, Alan S, 1995. "The rate of time preference : Implications for the greenhouse debate," Energy Policy, Elsevier, vol. 23(4-5), pages 391-394.
    9. Dowlatabadi, Hadi, 1995. "Integrated assessment models of climate change : An incomplete overview," Energy Policy, Elsevier, vol. 23(4-5), pages 289-296.
    10. Thomas F. Stocker & Andreas Schmittner, 1997. "Influence of CO2 emission rates on the stability of the thermohaline circulation," Nature, Nature, vol. 388(6645), pages 862-865, August.
    11. Richels, Richard & Edmonds, Jae, 1995. "The economics of stabilizing atmospheric CO2 concentrations," Energy Policy, Elsevier, vol. 23(4-5), pages 373-378.
    12. Stefan Rahmstorf, 1997. "Risk of sea-change in the Atlantic," Nature, Nature, vol. 388(6645), pages 825-826, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Michael Link & Richard S. J. Tol, 2004. "Possible economic impacts of a shutdown of the thermohaline circulation: an application of FUND," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 3(2), pages 99-114, September.
    2. Elizabeth Kopits & Alex L. Marten & Ann Wolverton, 2013. "Moving Forward with Incorporating "Catastrophic" Climate Change into Policy Analysis," NCEE Working Paper Series 201301, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2013.
    3. Mariia Belaia & Michael Funke & Nicole Glanemann, 2017. "Global Warming and a Potential Tipping Point in the Atlantic Thermohaline Circulation: The Role of Risk Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(1), pages 93-125, May.
    4. Ranjan, Ram & Shortle, James S. & Marshall, Elizabeth P., 2003. "The Relevance and Implications of the Environmental Kuznets Curve Under Stock Effects and Non-Linearities: A Hysteresis Based Approach," 2003 Annual meeting, July 27-30, Montreal, Canada 22147, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Geoffrey Heal & Bengt Kriström, 2002. "Uncertainty and Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 3-39, June.
    6. Hall, Darwin C. & Behl, Richard J., 2006. "Integrating economic analysis and the science of climate instability," Ecological Economics, Elsevier, vol. 57(3), pages 442-465, May.
    7. Lempert, Robert J. & Sanstad, Alan H. & Schlesinger, Michael E., 2006. "Multiple equilibria in a stochastic implementation of DICE with abrupt climate change," Energy Economics, Elsevier, vol. 28(5-6), pages 677-689, November.
    8. T. Bruckner & K. Zickfeld, 2009. "Emissions corridors for reducing the risk of a collapse of the Atlantic thermohaline circulation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(1), pages 61-83, January.
    9. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    10. Gregory Garner & Patrick Reed & Klaus Keller, 2016. "Climate risk management requires explicit representation of societal trade-offs," Climatic Change, Springer, vol. 134(4), pages 713-723, February.
    11. Greiner, Alfred & Semmler, Willi, 2005. "Economic growth and global warming: A model of multiple equilibria and thresholds," Journal of Economic Behavior & Organization, Elsevier, vol. 57(4), pages 430-447, August.
    12. Thomas S. Fiddaman, 2002. "Exploring policy options with a behavioral climate–economy model," System Dynamics Review, System Dynamics Society, vol. 18(2), pages 243-267, June.
    13. Ranjan, Ram & Shortle, James, 2007. "The environmental Kuznets curve when the environment exhibits hysteresis," Ecological Economics, Elsevier, vol. 64(1), pages 204-215, October.
    14. Dominika Czyz & Karolina Safarzynska, 2023. "Catastrophic Damages and the Optimal Carbon Tax Under Loss Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(2), pages 303-340, June.
    15. Kingwell, Ross S., 2006. "Is Hanrahan sort of right? Will climate change ruin us all?," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 137961, Australian Agricultural and Resource Economics Society.
    16. Kousky, Carolyn & Rostapshova, Olga & Toman, Michael & Zeckhauser, Richard, 2009. "Responding to Threats of Climate Change Mega-Catastrophes," RFF Working Paper Series dp-09-45, Resources for the Future.
    17. Marlos Goes & Nancy Tuana & Klaus Keller, 2011. "The economics (or lack thereof) of aerosol geoengineering," Climatic Change, Springer, vol. 109(3), pages 719-744, December.
    18. Thomas BRUCKNER & K. ZICKFELD, 2008. "Inverse Integrated Assessment of Climate Change: the Guard-rail Approach," EcoMod2008 23800018, EcoMod.
    19. Bahn, Olivier & Edwards, Neil R. & Knutti, Reto & Stocker, Thomas F., 2011. "Energy policies avoiding a tipping point in the climate system," Energy Policy, Elsevier, vol. 39(1), pages 334-348, January.
    20. Gregory Garner & Patrick Reed & Klaus Keller, 2016. "Climate risk management requires explicit representation of societal trade-offs," Climatic Change, Springer, vol. 134(4), pages 713-723, February.
    21. Kingwell, Ross S., 2006. "Climate change in Australia: agricultural impacts and adaptation," Australasian Agribusiness Review, University of Melbourne, Department of Agriculture and Food Systems, vol. 14.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    2. A. Patt, 1997. "Economists and Ecologists: Different Frames of Reference for Global Climate Change," Working Papers ir97056, International Institute for Applied Systems Analysis.
    3. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    4. Havranek, Tomas & Irsova, Zuzana & Janda, Karel & Zilberman, David, 2015. "Selective reporting and the social cost of carbon," Energy Economics, Elsevier, vol. 51(C), pages 394-406.
    5. Tol, Richard S. J., 2008. "The Social Cost of Carbon: Trends, Outliers and Catastrophes," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 2, pages 1-22.
    6. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.
    7. Michael Toman, 1998. "Research Frontiers in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 603-621, April.
    8. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    9. Jung A Lee & Jinhyung Chon & Changwoo Ahn, 2014. "Planning Landscape Corridors in Ecological Infrastructure Using Least-Cost Path Methods Based on the Value of Ecosystem Services," Sustainability, MDPI, vol. 6(11), pages 1-22, October.
    10. Keller, Klaus & Bolker, Benjamin M. & Bradford, D.F.David F., 2004. "Uncertain climate thresholds and optimal economic growth," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 723-741, July.
    11. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    12. Richard S.J. Tol, 2003. "The Marginal Costs Of Carbon Dioxide Emissions: An Assessment Of The Uncertainties," Working Papers FNU-19, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2003.
    13. Anthoff, David & Rose, Steven K. & Tol, Richard S. J. & Waldhoff, Stephanie, 2011. "The Time Evolution of the Social Cost of Carbon: An Application of FUND," Papers WP405, Economic and Social Research Institute (ESRI).
    14. Tol, Richard S.J., 2006. "The Polluter Pays Principle and Cost-Benefit Analysis of Climate Change: An Application of Fund," Climate Change Modelling and Policy Working Papers 12058, Fondazione Eni Enrico Mattei (FEEM).
    15. Karp, Larry & Zhang, Jiangfeng, 2001. "Bayesian Learning and the Regulation of Greenhouse Gas Emissions," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt2fr0783c, Department of Agricultural & Resource Economics, UC Berkeley.
    16. Ashish Rana & Tsuneyuki Morita, 2000. "Scenarios for greenhouse gas emission mitigation: a review of modeling of strategies and policies in integrated assessment models," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 3(2), pages 267-289, June.
    17. Tol, Richard S. J., 2005. "The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties," Energy Policy, Elsevier, vol. 33(16), pages 2064-2074, November.
    18. Carraro, Carlo & Sgobbi, Alessandra & Bosetti, Valentina & Tavoni, Massimo, 2008. "Delayed Action and Uncertain Targets. How Much Will Climate Policy Cost?," CEPR Discussion Papers 6973, C.E.P.R. Discussion Papers.
    19. Christian Azar, 1998. "Are Optimal CO 2 Emissions Really Optimal?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 301-315, April.
    20. Ingham, Alan & Ma, Jie & Ulph, Alistair, 2007. "Climate change, mitigation and adaptation with uncertainty and learning," Energy Policy, Elsevier, vol. 35(11), pages 5354-5369, November.

    More about this item

    JEL classification:

    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q30 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.