IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p4277-d183865.html
   My bibliography  Save this article

An Introduction to the Hyperspace of Hargreaves-Samani Reference Evapotranspiration

Author

Listed:
  • Naim Haie

    (Civil Engineering Department, University of Minho, Azurem Campus, 4800-058 Guimarães, Portugal)

  • Rui M. Pereira

    (Department of Mathematics and Centre of Physics UM-UP, University of Minho, 4710-057 Braga, Portugal)

  • Haw Yen

    (Blackland Research and Extension Center, Texas A&M University, Temple, TX 76502, USA)

Abstract

Climate change has been shown to directly influence evapotranspiration, which is one of the crucial watershed processes. The common approach to its calculation is via mathematical equations, such as 1985 Hargreaves-Samani (HS85). It computes reference evapotranspiration (ETo) through three climatic variables and one constant: RA (extra-terrestrial radiation), TC (mean temperature), TR (temperature range) and KR (empirical coefficient). To make HS85 more accurate, one of its authors proposed an equation for KR as a function of TR in 2000 (HS00). Both models are 4D and their internal behaviours are difficult to understand, hence, the data driven applications prevalent among experts and managers. In this study, we introduce an innovative research by trying to respond to two questions. What are the relationships between TC and TR? What are the internal patterns of HS hyperspace (4D domain) and the changes in ETo possibilities of the two models? In the proposed approach, thresholds for the four variables are utilized to cover majority of the agroclimatic situations in the world and the hyperspace is discretized with more than 50,000 calculation nodes. The ETo results show that under various climatic conditions, the behaviour of HS is nonlinear (more for HS00) leading to an increased uncertainty particularly for data driven applications. TC and TR show patterns useful for regions with less data.

Suggested Citation

  • Naim Haie & Rui M. Pereira & Haw Yen, 2018. "An Introduction to the Hyperspace of Hargreaves-Samani Reference Evapotranspiration," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4277-:d:183865
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/4277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/4277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naim Haie, 2016. "Sefficiency (sustainable efficiency) of water–energy–food entangled systems," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 32(5), pages 721-737, September.
    2. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    3. Naim Haie & Andrew A. Keller, 2014. "Macro, meso, and micro-efficiencies and terminologies in water resources management: a look at urban and agricultural differences," Water International, Taylor & Francis Journals, vol. 39(1), pages 35-48, January.
    4. Dereje Birhanu & Hyeonjun Kim & Cheolhee Jang & Sanghyun Park, 2018. "Does the Complexity of Evapotranspiration and Hydrological Models Enhance Robustness?," Sustainability, MDPI, vol. 10(8), pages 1-34, August.
    5. Abderraouf Elferchichi & Giuseppina A. Giorgio & Nicola Lamaddalena & Maria Ragosta & Vito Telesca, 2017. "Variability of Temperature and Its Impact on Reference Evapotranspiration: The Test Case of the Apulia Region (Southern Italy)," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    6. Wang, Ruoyu & Bowling, Laura C. & Cherkauer, Keith A. & Cibin, Raj & Her, Younggu & Chaubey, Indrajeet, 2017. "Biophysical and hydrological effects of future climate change including trends in CO2, in the St. Joseph River watershed, Eastern Corn Belt," Agricultural Water Management, Elsevier, vol. 180(PB), pages 280-296.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kibria, Saad & Masia, Sara & Sušnik, Janez & Hessels, Tim Martijn, 2021. "Critical comparison of actual evapotranspiration estimates using ground based, remotely sensed, and simulated data in the USA," Agricultural Water Management, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Marjan Aziz & Madeeha Khan & Naveeda Anjum & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim & Siva K. Balasundram & Muhammad Aleem, 2022. "Scientific Irrigation Scheduling for Sustainable Production in Olive Groves," Agriculture, MDPI, vol. 12(4), pages 1-14, April.
    3. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    4. Zhou, Xinyao & Zhang, Yongqiang & Sheng, Zhuping & Manevski, Kiril & Andersen, Mathias N. & Han, Shumin & Li, Huilong & Yang, Yonghui, 2021. "Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework," Agricultural Water Management, Elsevier, vol. 249(C).
    5. Geries, L.S.M. & El-Shahawy, T.A. & Moursi, E.A., 2021. "Cut-off irrigation as an effective tool to increase water-use efficiency, enhance productivity, quality and storability of some onion cultivars," Agricultural Water Management, Elsevier, vol. 244(C).
    6. Peragón, Juan M. & Pérez-Latorre, Francisco J. & Delgado, Antonio & Tóth, Tibor, 2018. "Best management irrigation practices assessed by a GIS-based decision tool for reducing salinization risks in olive orchards," Agricultural Water Management, Elsevier, vol. 202(C), pages 33-41.
    7. Gonzalo Villa‐Cox & Francesco Cavazza & Cristian Jordan & Mijail Arias‐Hidalgo & Paúl Herrera & Ramon Espinel & Davide Viaggi & Stijn Speelman, 2021. "Understanding constraints on private irrigation adoption decisions under uncertainty in data constrained settings: A novel empirical approach tested on Ecuadorian Cocoa cultivations," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 985-999, November.
    8. Yang, Jia & Ren, Wei & Ouyang, Ying & Feng, Gary & Tao, Bo & Granger, Joshua J. & Poudel, Krishna P., 2019. "Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley," Agricultural Water Management, Elsevier, vol. 217(C), pages 60-72.
    9. Ireneusz Cymes & Ewa Dragańska & Zbigniew Brodziński, 2022. "Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change," Agriculture, MDPI, vol. 12(6), pages 1-14, May.
    10. Mondol, Md Anarul Haque & Zhu, Xuan & Dunkerley, David & Henley, Benjamin J., 2022. "Changing occurrence of crop water surplus or deficit and the impact of irrigation: An analysis highlighting consequences for rice production in Bangladesh," Agricultural Water Management, Elsevier, vol. 269(C).
    11. Kaur, Lovepreet & Kaur, Anureet & Brar, A.S., 2021. "Water use efficiency of green gram (Vigna radiata L.) impacted by paddy straw mulch and irrigation regimes in north-western India," Agricultural Water Management, Elsevier, vol. 258(C).
    12. Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Luxon Nhamo & James Magidi & Adolph Nyamugama & Alistair D. Clulow & Mbulisi Sibanda & Vimbayi G. P. Chimonyo & Tafadzwanashe Mabhaudhi, 2020. "Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    14. Chauhdary, Junaid Nawaz & Li, Hong & Akbar, Nadeem & Javaid, Maria & Rizwan, Muhammad & Akhlaq, Muhammad, 2024. "Evaluating corn production under different plant spacings through integrated modeling approach and simulating its future response under climate change scenarios," Agricultural Water Management, Elsevier, vol. 293(C).
    15. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    16. Mabhaudhi, T. & Mpandeli, S. & Nhamo, Luxon & Chimonyo, V. G. P. & Nhemachena, Charles & Senzanje, A. & Naidoo, D. & Modi, A. T., 2018. "Prospects for improving irrigated agriculture in Southern Africa: linking water, energy and food," Papers published in Journals (Open Access), International Water Management Institute, pages 10(12):1-16.
    17. à lvaro Henrique Cândido de Souza & Roberto Rezende & Cássio de Castro Seron & Marcelo Zolin Lorenzoni & Jean Marcelo Rodrigues do Nascimeto & Cláudia Salim Lozano & Daniel Nalin & Daniele de Souza, 2024. "Evaluation of the Growth and the Yield of Eggplant Crop Under Different Irrigation Depths and Magnetic Treatment of Water," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 11(17), pages 1-35, April.
    18. Alves, Gabriel de Sampaio Morais & Fulginiti, Lilyan & Perrin, Richard & Braga, Marcelo José, 2021. "The Use Value of Irrigation Water for Brazilian Agriculture," 2021 Conference, August 17-31, 2021, Virtual 315861, International Association of Agricultural Economists.
    19. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    20. Junaid Alam Memon & Mehwish Qudoos Alizai & Anwar Hussain, 2020. "Who will think outside the sink? Farmers’ willingness to invest in technologies for groundwater sustainability in Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4425-4445, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4277-:d:183865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.