IDEAS home Printed from https://ideas.repec.org/a/taf/cijwxx/v32y2016i5p721-737.html
   My bibliography  Save this article

Sefficiency (sustainable efficiency) of water–energy–food entangled systems

Author

Listed:
  • Naim Haie

Abstract

Water–energy–food (WEF) entanglement is intensifying and technology is being presented as a crucial solution. But time and again the implemented alternative manifests results contrary to the objectives of design or management. To advance water security, transparent and complete input–output methodologies are needed. Here, a Sefficiency (sustainable efficiency) framework is used to reason through systemic analyses of options for WEF schemes by using water quantity within a comprehensive water balance, and quality and benefits in a multilevel water-use system. An energy regime (cost and normalized functions) and Sefficiency compute performance of four cases that show flaws both conceptually and practically in current policy and scientific tendencies.

Suggested Citation

  • Naim Haie, 2016. "Sefficiency (sustainable efficiency) of water–energy–food entangled systems," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 32(5), pages 721-737, September.
  • Handle: RePEc:taf:cijwxx:v:32:y:2016:i:5:p:721-737
    DOI: 10.1080/07900627.2015.1070091
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07900627.2015.1070091
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07900627.2015.1070091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Food and Agriculture Organization of the UN UN, 2015. "Towards a Water and Food Secure Future," Working Papers id:6697, eSocialSciences.
    2. Seckler, D., 1996. "The new era of water resources management: from \dry\ to \wet\ water savings," IWMI Research Reports H018206, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naim Haie & Rui M. Pereira & Haw Yen, 2018. "An Introduction to the Hyperspace of Hargreaves-Samani Reference Evapotranspiration," Sustainability, MDPI, vol. 10(11), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    2. Jinxia Wang & K. K. Klein & Henning Bjornlund & Lijuan Zhang & Wencui Zhang, 2015. "Changing to more efficient irrigation technologies in southern Alberta (Canada): an empirical analysis," Water International, Taylor & Francis Journals, vol. 40(7), pages 1040-1058, November.
    3. Brar, S.K. & Mahal, S.S. & Brar, A.S. & Vashist, K.K. & Sharma, Neerja & Buttar, G.S., 2012. "Transplanting time and seedling age affect water productivity, rice yield and quality in north-west India," Agricultural Water Management, Elsevier, vol. 115(C), pages 217-222.
    4. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    5. Wang, Deshen & Chen, Bintong & Chen, Jing, 2019. "Credit card fraud detection strategies with consumer incentives," Omega, Elsevier, vol. 88(C), pages 179-195.
    6. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    7. Agüero Alcaras, L. Martín & Rousseaux, M. Cecilia & Searles, Peter S., 2021. "Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate," Agricultural Water Management, Elsevier, vol. 245(C).
    8. Burton, M. A. & Kivumbi, D. & El-Askari, K., 1999. "Opportunities and constraints to improving irrigation water management: Foci for research," Agricultural Water Management, Elsevier, vol. 40(1), pages 37-44, March.
    9. Ghahroodi, E. Mokari & Noory, H. & Liaghat, A.M., 2015. "Performance evaluation study and hydrologic and productive analysis of irrigation systems at the Qazvin irrigation network (Iran)," Agricultural Water Management, Elsevier, vol. 148(C), pages 189-195.
    10. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," IWMI Books, Reports H040602, International Water Management Institute.
    11. Dirk Zoebl, 2002. "Crop water requirements revisited: The human dimensions of irrigation science and crop water management with special reference to the FAO approach," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 19(3), pages 173-187, September.
    12. Ahmad, M.D. & Turral, H. & Nazeer, A., 2009. "Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan," Agricultural Water Management, Elsevier, vol. 96(4), pages 551-564, April.
    13. Stephens, William & Hess, Tim, 1999. "Systems approaches to water management research," Agricultural Water Management, Elsevier, vol. 40(1), pages 3-13, March.
    14. Skaggs, Rhonda K., 2000. "Drip Irrigation In The Desert: Adoption, Implications, And Obstacles," 2000 Annual Meeting, June 29-July 1, 2000, Vancouver, British Columbia 36412, Western Agricultural Economics Association.
    15. María Blanco & Benjamin Van Doorslaer & Wolfgang Britz & Heinz-Peter Witzke, 2012. "Exploring the feasibility of integrating water issues into the CAPRI model," JRC Research Reports JRC77058, Joint Research Centre.
    16. Kumar, M. Dinesh & van Dam, J. C., 2009. "Improving water productivity in agriculture in India: beyond \u2018more crop per drop\u2019," IWMI Books, Reports H042639, International Water Management Institute.
    17. Mark W. Rosegrant & Ruth S. Meinzen‐Dick, 1996. "Water Resources in the Asia‐Pacific Region: Managing Scarcity," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 10(2), pages 32-53, November.
    18. Lankford, Bruce, 2012. "Fictions, fractions, factorials and fractures; on the framing of irrigation efficiency," Agricultural Water Management, Elsevier, vol. 108(C), pages 27-38.
    19. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," Book Chapters,, International Water Management Institute.
    20. Svendsen, M., 2001. "Basin management in a mature closed basin: the case of California's Central Valley," Conference Papers h029125, International Water Management Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:cijwxx:v:32:y:2016:i:5:p:721-737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/cijw20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.