IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v11y2024i17p35.html
   My bibliography  Save this article

Evaluation of the Growth and the Yield of Eggplant Crop Under Different Irrigation Depths and Magnetic Treatment of Water

Author

Listed:
  • à lvaro Henrique Cândido de Souza
  • Roberto Rezende
  • Cássio de Castro Seron
  • Marcelo Zolin Lorenzoni
  • Jean Marcelo Rodrigues do Nascimeto
  • Cláudia Salim Lozano
  • Daniel Nalin
  • Daniele de Souza Terassi
  • Antônio Carlos Andrade Gonçalves
  • Reni Saath
  • Paulo Sérgio Lourenço de Freitas

Abstract

The use of magnetizers for the treatment of irrigation water can be used in agriculture as an alternative to increase the growth and yield of several crops. The objective of this study was to evaluate the effect of different irrigation depths and magnetic treatment of water on eggplant crop cultivated in protected environment. The study was carried out in two experiments, in the first one, the design was completely randomized with four replications and two factors- water depths (50, 75 and 100% ETc) for two water qualities (water treated by magnetizers and water without treatment). In the second one, the design was completely randomized with five replicates and two factors- water depths (75 and 100% ETc) for two irrigation water treatment (water treated by magnetizers and water without treatment). In the second experiment was ignored the treatment of 50% of ETc in order to increase the number of repetitions to check if there are differences between water treated to water without treatment. There were no significant differences in eggplant yield and growth as function of the magnetic treatment of water. The water depth that provided the highest yield, number of fruits per plant and stem dry matter in the two experiments was 100% ETc regardless of water quality.

Suggested Citation

  • à lvaro Henrique Cândido de Souza & Roberto Rezende & Cássio de Castro Seron & Marcelo Zolin Lorenzoni & Jean Marcelo Rodrigues do Nascimeto & Cláudia Salim Lozano & Daniel Nalin & Daniele de Souza, 2024. "Evaluation of the Growth and the Yield of Eggplant Crop Under Different Irrigation Depths and Magnetic Treatment of Water," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 11(17), pages 1-35, April.
  • Handle: RePEc:ibn:jasjnl:v:11:y:2024:i:17:p:35
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/0/0/40797/42106
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/0/40797
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marjan Aziz & Madeeha Khan & Naveeda Anjum & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim & Siva K. Balasundram & Muhammad Aleem, 2022. "Scientific Irrigation Scheduling for Sustainable Production in Olive Groves," Agriculture, MDPI, vol. 12(4), pages 1-14, April.
    2. Peragón, Juan M. & Pérez-Latorre, Francisco J. & Delgado, Antonio & Tóth, Tibor, 2018. "Best management irrigation practices assessed by a GIS-based decision tool for reducing salinization risks in olive orchards," Agricultural Water Management, Elsevier, vol. 202(C), pages 33-41.
    3. Ireneusz Cymes & Ewa Dragańska & Zbigniew Brodziński, 2022. "Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change," Agriculture, MDPI, vol. 12(6), pages 1-14, May.
    4. Kaur, Lovepreet & Kaur, Anureet & Brar, A.S., 2021. "Water use efficiency of green gram (Vigna radiata L.) impacted by paddy straw mulch and irrigation regimes in north-western India," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Luxon Nhamo & James Magidi & Adolph Nyamugama & Alistair D. Clulow & Mbulisi Sibanda & Vimbayi G. P. Chimonyo & Tafadzwanashe Mabhaudhi, 2020. "Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    7. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    8. Mabhaudhi, T. & Mpandeli, S. & Nhamo, Luxon & Chimonyo, V. G. P. & Nhemachena, Charles & Senzanje, A. & Naidoo, D. & Modi, A. T., 2018. "Prospects for improving irrigated agriculture in Southern Africa: linking water, energy and food," Papers published in Journals (Open Access), International Water Management Institute, pages 10(12):1-16.
    9. Alves, Gabriel de Sampaio Morais & Fulginiti, Lilyan & Perrin, Richard & Braga, Marcelo José, 2021. "The Use Value of Irrigation Water for Brazilian Agriculture," 2021 Conference, August 17-31, 2021, Virtual 315861, International Association of Agricultural Economists.
    10. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    11. Andrisa Balbinot & Anderson da Rosa Feijó & Marcus Vinicius Fipke & Dalvane Rockenbach & Joseph Harry Massey & Edinalvo Rabaioli Camargo & Marcia Foster Mesko & Priscila Tessmer Scaglioni & Luis Anton, 2021. "Effects of Elevated Atmospheric CO 2 Concentration and Water Regime on Rice Yield, Water Use Efficiency, and Arsenic and Cadmium Accumulation in Grain," Agriculture, MDPI, vol. 11(8), pages 1-13, July.
    12. Pranay Ranjan & Jonathan D Witter, 2020. "Promoting adoption of two-stage agricultural drainage ditches: A change agent perspective," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-18, March.
    13. Berbel, Julio & Gutierrez-Marín, Carlos & Expósito, Alfonso, 2018. "Microeconomic analysis of irrigation efficiency improvement in water use and water consumption," Agricultural Water Management, Elsevier, vol. 203(C), pages 423-429.
    14. Davies, Michael J. & Harrison-Murray, Richard & Atkinson, Christopher J. & Grant, Olga M., 2016. "Application of deficit irrigation to container-grown hardy ornamental nursery stock via overhead irrigation, compared to drip irrigation," Agricultural Water Management, Elsevier, vol. 163(C), pages 244-254.
    15. Srivastava, P.K. & Singh, Raj Mohan, 2016. "GIS based integrated modelling framework for agricultural canal system simulation and management in Indo-Gangetic plains of India," Agricultural Water Management, Elsevier, vol. 163(C), pages 37-47.
    16. Lopez, G. & Boini, A. & Manfrini, L. & Torres-Ruiz, J.M. & Pierpaoli, E. & Zibordi, M. & Losciale, P. & Morandi, B. & Corelli-Grappadelli, L., 2018. "Effect of shading and water stress on light interception, physiology and yield of apple trees," Agricultural Water Management, Elsevier, vol. 210(C), pages 140-148.
    17. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    18. Molle, François & Tanouti, Oumaima, 2017. "Squaring the circle: Agricultural intensification vs. water conservation in Morocco," Agricultural Water Management, Elsevier, vol. 192(C), pages 170-179.
    19. Fan, Yubing & Himanshu, Sushil K. & Ale, Srinivasulu & DeLaune, Paul B. & Zhang, Tian & Park, Seong C. & Colaizzi, Paul D. & Evett, Steven R. & Baumhardt, R. Louis, 2022. "The synergy between water conservation and economic profitability of adopting alternative irrigation systems for cotton production in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 262(C).
    20. Phakathi, Sandile & Sinyolo, Sikhulumile & Marire, Juniors & Fraser, Gavin, 2021. "Farmer-led institutional innovations in managing smallholder irrigation schemes in KwaZulu-Natal and Eastern Cape Provinces, South Africa," Agricultural Water Management, Elsevier, vol. 248(C).

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:11:y:2024:i:17:p:35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.