IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p4192-d182704.html
   My bibliography  Save this article

Combination of Tree Configuration with Street Configuration for Thermal Comfort Optimization under Extreme Summer Conditions in the Urban Center of Shantou City, China

Author

Listed:
  • Bohong Zheng

    (School of Architecture and Art, Central South University, Changsha 410083, China)

  • Komi Bernard BEDRA

    (School of Architecture and Art, Central South University, Changsha 410083, China)

  • Jian Zheng

    (School of Architecture, South China University of Technology, Guangzhou 510641, China)

  • Guoguang Wang

    (School of Architecture, South China University of Technology, Guangzhou 510641, China
    State Key Laboratory of Subtropical Building Science, South China University of Technology, GuangZhou 510641, China)

Abstract

Along with global climate change and the worldwide heat island phenomenon, developing climatic methods and planning practices for the benefit of thermal comfort is of increasing interest. Studies have focused on urban streets, studying the aspect ratio, the orientation, street vegetation patterns, etc. and how they affect thermal comfort. While the role of vegetation is undeniable, this paper asks the question whether the effects of a tree configuration does not vary under different street configurations, and if yes, how to select tree species and determine their appropriate layout. Here, an analytical framework is proposed to test the different tree configurations (changing one variable at a time) with the least favorable street configuration. It is confirmed that the east–west oriented streets are the least favorable cases and denser tree canopies are better for cooling. The interval between the trees are observed to have an optimal effect when it is equal to the crown width at maturity. Furthermore, the results show that the heat mitigation rate of a tree configuration is not linearly improved by the Aspect Ratio (AR). In the case of Shantou city, the improvement of thermal comfort slows down when the AR reaches 1.5 while Mangifera indica planted with 10 m intervals is recommended among the common street-tree species. Other species could be used also, but should meet the requirements of the canopy density and the interval of layout. The paper does not consider other configuration options such as asymmetrical cases of street geometry and one-side or axial tree planting, etc., but the framework allows for adding such options and simulating thermal comfort for a greater number of scenarios.

Suggested Citation

  • Bohong Zheng & Komi Bernard BEDRA & Jian Zheng & Guoguang Wang, 2018. "Combination of Tree Configuration with Street Configuration for Thermal Comfort Optimization under Extreme Summer Conditions in the Urban Center of Shantou City, China," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4192-:d:182704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/4192/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/4192/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krüger, E. & Pearlmutter, D. & Rasia, F., 2010. "Evaluating the impact of canyon geometry and orientation on cooling loads in a high-mass building in a hot dry environment," Applied Energy, Elsevier, vol. 87(6), pages 2068-2078, June.
    2. Andreou, E., 2013. "Thermal comfort in outdoor spaces and urban canyon microclimate," Renewable Energy, Elsevier, vol. 55(C), pages 182-188.
    3. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    4. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2016. "Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage," Applied Energy, Elsevier, vol. 163(C), pages 93-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binghui Si & Zhichao Tian & Wenqiang Chen & Xing Jin & Xin Zhou & Xing Shi, 2018. "Performance Assessment of Algorithms for Building Energy Optimization Problems with Different Properties," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    2. Shi Yin & Werner Lang & Yiqiang Xiao & Zhao Xu, 2019. "Correlative Impact of Shading Strategies and Configurations Design on Pedestrian-Level Thermal Comfort in Traditional Shophouse Neighbourhoods, Southern China," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    3. Biao Liu & Xian Guo & Jie Jiang, 2023. "How Urban Morphology Relates to the Urban Heat Island Effect: A Multi-Indicator Study," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    4. Guilhardo Barros Moreira de Carvalho & Luiz Bueno da Silva, 2024. "The microclimate implications of urban form applying computer simulation: systematic literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 24687-24726, October.
    5. Heejung Nam & Seunghyun Hong & Dohyuk Im & Ayun Maeng & Sunmi Je & Wanmo Kang & Hanna Chang, 2024. "Matching Trees to Streets by Street Type: A Case Study of Street Tree Suitability and Services in a Highly Urbanized City," Land, MDPI, vol. 13(12), pages 1-20, December.
    6. Rui Wang & Qi Chen & Dexiang Wang, 2022. "Effects of Altitude, Plant Communities, and Canopies on the Thermal Comfort, Negative Air Ions, and Airborne Particles of Mountain Forests in Summer," Sustainability, MDPI, vol. 14(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pingying Lin & Zhonghua Gou & Stephen Siu-Yu Lau & Hao Qin, 2017. "The Impact of Urban Design Descriptors on Outdoor Thermal Environment: A Literature Review," Energies, MDPI, vol. 10(12), pages 1-19, December.
    2. Kleerekoper, Laura & Taleghani, Mohammad & van den Dobbelsteen, Andy & Hordijk, Truus, 2017. "Urban measures for hot weather conditions in a temperate climate condition: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 515-533.
    3. Xuan Ma & Hiroatsu Fukuda & Dian Zhou & Mengying Wang, 2019. "A Study of the Pedestrianized Zone for Tourists: Urban Design Effects on Humans’ Thermal Comfort in Fo Shan City, Southern China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    4. Nazanin Nasrollahi & Amir Ghosouri & Jamal Khodakarami & Mohammad Taleghani, 2020. "Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review," Sustainability, MDPI, vol. 12(23), pages 1-23, November.
    5. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    6. Yasser Ibrahim & Tristan Kershaw & Paul Shepherd & David Coley, 2021. "On the Optimisation of Urban form Design, Energy Consumption and Outdoor Thermal Comfort Using a Parametric Workflow in a Hot Arid Zone," Energies, MDPI, vol. 14(13), pages 1-22, July.
    7. Ernesto Antonini & Vincenzo Vodola & Jacopo Gaspari & Michaela De Giglio, 2020. "Outdoor Wellbeing and Quality of Life: A Scientific Literature Review on Thermal Comfort," Energies, MDPI, vol. 13(8), pages 1-22, April.
    8. Shreevastava, Anamika & Bhalachandran, Saiprasanth & McGrath, Gavan & Huber, Matthew & Rao, P. Suresh C., 2019. "Paradoxical impact of sprawling intra-Urban Heat Islets: Reducing mean surface temperatures while enhancing local extremes," Earth Arxiv gxj9m, Center for Open Science.
    9. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.
    10. Eissa, M.M., 2018. "First time real time incentive demand response program in smart grid with “i-Energy” management system with different resources," Applied Energy, Elsevier, vol. 212(C), pages 607-621.
    11. Bonggeun Song & Kyunghun Park, 2019. "Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    12. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    13. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    14. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    15. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    16. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    17. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    18. Liuying Wang & Gaoyuan Wang & Tian Chen & Junnan Liu, 2023. "The Regulating Effect of Urban Large Planar Water Bodies on Residential Heat Islands: A Case Study of Meijiang Lake in Tianjin," Land, MDPI, vol. 12(12), pages 1-22, December.
    19. Xiuqiang He & Hua Geng & Geng Yang & Xin Zou, 2018. "Coordinated Control for Large-Scale Wind Farms with LCC-HVDC Integration," Energies, MDPI, vol. 11(9), pages 1-19, August.
    20. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4192-:d:182704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.