IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i23p10000-d453813.html
   My bibliography  Save this article

Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review

Author

Listed:
  • Nazanin Nasrollahi

    (Department of Architecture, Faculty of Technology and Engineering, Ilam University, 69134 Ilam, Iran)

  • Amir Ghosouri

    (Department of Architecture, Faculty of Technology and Engineering, Ilam University, 69134 Ilam, Iran)

  • Jamal Khodakarami

    (Department of Architecture, Faculty of Technology and Engineering, Ilam University, 69134 Ilam, Iran)

  • Mohammad Taleghani

    (Leeds School of Architecture, Leeds Beckett University, Leeds LS1 3HE, UK)

Abstract

Thermal comfort is one of the main factors affecting pedestrian health, and improving thermal comfort enhances walkability. In this paper, the impact of various strategies on thermal-comfort improvement for pedestrians is thoroughly evaluated and compared. Review studies cover both fieldwork and simulation results. These strategies consist of shading (trees, buildings), the orientation and geometry of urban forms, vegetation, solar-reflective materials, and water bodies, which were investigated as the most effective ways to improve outdoor thermal comfort. Results showed that the most important climatic factors affecting outdoor thermal comfort are mean radiant temperature, wind speed, and wind direction in a microclimate. The best heat-mitigation strategy for improving thermal comfort was found to be vegetation and specifically trees because of their shading effect. The effect of height-to-width (H/W) ratio in canyons is another important factor. By increasing H/W ratio, the thermal-comfort level also increases. Deploying highly reflective materials in urban canyons is not recommended, as several studies showed that they could reflect solar radiation onto pedestrians. Results also showed that, in order to achieve a satisfactory level of thermal comfort, physiological and psychological factors should be considered together.

Suggested Citation

  • Nazanin Nasrollahi & Amir Ghosouri & Jamal Khodakarami & Mohammad Taleghani, 2020. "Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review," Sustainability, MDPI, vol. 12(23), pages 1-23, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10000-:d:453813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/23/10000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/23/10000/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bourbia, F. & Boucheriba, F., 2010. "Impact of street design on urban microclimate for semi arid climate (Constantine)," Renewable Energy, Elsevier, vol. 35(2), pages 343-347.
    2. Andreou, E., 2013. "Thermal comfort in outdoor spaces and urban canyon microclimate," Renewable Energy, Elsevier, vol. 55(C), pages 182-188.
    3. Rosso, Federica & Golasi, Iacopo & Castaldo, Veronica Lucia & Piselli, Cristina & Pisello, Anna Laura & Salata, Ferdinando & Ferrero, Marco & Cotana, Franco & de Lieto Vollaro, Andrea, 2018. "On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons," Renewable Energy, Elsevier, vol. 118(C), pages 825-839.
    4. Vijayaraghavan, K., 2016. "Green roofs: A critical review on the role of components, benefits, limitations and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 740-752.
    5. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    6. Rodríguez-Algeciras, José & Tablada, Abel & Chaos-Yeras, Mabel & De la Paz, Guillermo & Matzarakis, Andreas, 2018. "Influence of aspect ratio and orientation on large courtyard thermal conditions in the historical centre of Camagüey-Cuba," Renewable Energy, Elsevier, vol. 125(C), pages 840-856.
    7. Kariminia, Shahab & Shamshirband, Shahaboddin & Hashim, Roslan & Saberi, Ahmadreza & Petković, Dalibor & Roy, Chandrabhushan & Motamedi, Shervin, 2016. "A simulation model for visitors’ thermal comfort at urban public squares using non-probabilistic binary-linear classifier through soft-computing methodologies," Energy, Elsevier, vol. 101(C), pages 568-580.
    8. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    9. Akbari, H. & Konopacki, S., 2005. "Calculating energy-saving potentials of heat-island reduction strategies," Energy Policy, Elsevier, vol. 33(6), pages 721-756, April.
    10. Hass-Klau, Carmen, 1993. "A review of the evidence from Germany and the UK," Transport Policy, Elsevier, vol. 1(1), pages 21-31, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Li & Feng Wu & Huiqiang Ma & Zhanjun Xu & Shaohua Wang, 2022. "Spatiotemporal Evolution and Relationship between Night Time Light and Land Surface Temperature: A Case Study of Beijing, China," Land, MDPI, vol. 11(4), pages 1-24, April.
    2. Jérôme Ngao & Macarena L. Cárdenas & Thierry Améglio & Jérôme Colin & Marc Saudreau, 2021. "Implications of Urban Land Management on the Cooling Properties of Urban Trees: Citizen Science and Laboratory Analysis," Sustainability, MDPI, vol. 13(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.
    2. Hakima Necira & Mohamed Elhadi Matallah & Soumia Bouzaher & Waqas Ahmed Mahar & Atef Ahriz, 2024. "Effect of Street Asymmetry, Albedo, and Shading on Pedestrian Outdoor Thermal Comfort in Hot Desert Climates," Sustainability, MDPI, vol. 16(3), pages 1-30, February.
    3. Ernesto Antonini & Vincenzo Vodola & Jacopo Gaspari & Michaela De Giglio, 2020. "Outdoor Wellbeing and Quality of Life: A Scientific Literature Review on Thermal Comfort," Energies, MDPI, vol. 13(8), pages 1-22, April.
    4. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    5. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    6. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Pigliautile, I. & Pisello, A.L. & Bou-Zeid, E., 2020. "Humans in the city: Representing outdoor thermal comfort in urban canopy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Xie, Xiaoxiong & Sahin, Ozge & Luo, Zhiwen & Yao, Runming, 2020. "Impact of neighbourhood-scale climate characteristics on building heating demand and night ventilation cooling potential," Renewable Energy, Elsevier, vol. 150(C), pages 943-956.
    9. Kleerekoper, Laura & Taleghani, Mohammad & van den Dobbelsteen, Andy & Hordijk, Truus, 2017. "Urban measures for hot weather conditions in a temperate climate condition: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 515-533.
    10. Ying Zhang & Xijun Hu & Zheng Liu & Chunling Zhou & Hong Liang, 2022. "A Greening Strategy of Mitigation of the Thermal Environment for Coastal Sloping Urban Space," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    11. Zhiming GUO & Tsuyoshi SETOGUCHI & Norihiro WATANABE & Ke HUO, 2018. "Public Open Space Design Study on the Basis of Microclimate and Spatial Behavior in Hot and Cold Weather Conditions in Downtown Area," Modern Applied Science, Canadian Center of Science and Education, vol. 12(2), pages 128-128, February.
    12. Sheikh Ahmad Zaki & Siti Wan Syahidah & Mohd Fairuz Shahidan & Mardiana Idayu Ahmad & Fitri Yakub & Mohamad Zaki Hassan & Mohd Yusof Md Daud, 2020. "Assessment of Outdoor Air Temperature with Different Shaded Area within an Urban University Campus in Hot-Humid Climate," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    13. Mohamed Elhadi Matallah & Djamel Alkama & Jacques Teller & Atef Ahriz & Shady Attia, 2021. "Quantification of the Outdoor Thermal Comfort within Different Oases Urban Fabrics," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    14. Junying Li & Jiying Liu & Jelena Srebric & Yuanman Hu & Miao Liu & Lei Su & Shunchang Wang, 2019. "The Effect of Tree-Planting Patterns on the Microclimate within a Courtyard," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    15. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    16. Abdul Munaf Mohamed Irfeey & Hing-Wah Chau & Mohamed Mahusoon Fathima Sumaiya & Cheuk Yin Wai & Nitin Muttil & Elmira Jamei, 2023. "Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    17. Yasser Ibrahim & Tristan Kershaw & Paul Shepherd & David Coley, 2021. "On the Optimisation of Urban form Design, Energy Consumption and Outdoor Thermal Comfort Using a Parametric Workflow in a Hot Arid Zone," Energies, MDPI, vol. 14(13), pages 1-22, July.
    18. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    19. Zheng Zhu & Jing Liang & Cheng Sun & Yunsong Han, 2020. "Summer Outdoor Thermal Comfort in Urban Commercial Pedestrian Streets in Severe Cold Regions of China," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    20. Eduardo Diz-Mellado & Samuele Rubino & Soledad Fernández-García & Macarena Gómez-Mármol & Carlos Rivera-Gómez & Carmen Galán-Marín, 2021. "Applied Machine Learning Algorithms for Courtyards Thermal Patterns Accurate Prediction," Mathematics, MDPI, vol. 9(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:10000-:d:453813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.