IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p4047-d180651.html
   My bibliography  Save this article

Research on the Evaluation Model of a Smart Grid Development Level Based on Differentiation of Development Demand

Author

Listed:
  • Jinchao Li

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Tianzhi Li

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Liu Han

    (State Grid Economic and Technological Research Institute CO., LTD., Beijing 102209, China)

Abstract

In order to eliminate the impact of inter-regional differentiation of development demand on the objective evaluation of the development level of smart grid, this paper establishes the evaluation model of weight modification, transmission mechanism and combination of subjective and objective weights. Firstly, the Analytic Hierarchy Process method is used to calculate the weights of evaluation indices of effect layer and then the indices of development demand are used to modify the weights of them. The association analysis and the correlation coefficient are used to establish the weights conduction coefficient between the effect level and the base level. Then the subjective weights of the indices of the base layer are calculated. The objective weights of the indices of the base layer are obtained by using the entropy method. The subjective weights of the base layer and the objective weights obtained by the entropy method are averagely calculated, and the comprehensive weights of the evaluation indices of the base layer are obtained. Then each index is scored according to the weights and index values. Finally, the model is used to quantitatively inspect the level of development of smart grid in specific regions and make a horizontal comparison, which provides a useful reference for the development of smart grids. The relevant examples verify the correctness and validity of the model.

Suggested Citation

  • Jinchao Li & Tianzhi Li & Liu Han, 2018. "Research on the Evaluation Model of a Smart Grid Development Level Based on Differentiation of Development Demand," Sustainability, MDPI, vol. 10(11), pages 1-25, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4047-:d:180651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/4047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/4047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Personal, Enrique & Guerrero, Juan Ignacio & Garcia, Antonio & Peña, Manuel & Leon, Carlos, 2014. "Key performance indicators: A useful tool to assess Smart Grid goals," Energy, Elsevier, vol. 76(C), pages 976-988.
    2. Leszczyna, Rafał, 2018. "Standards on cyber security assessment of smart grid," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 70-89.
    3. Guopeng Song & Hao Chen & Bo Guo, 2014. "A Layered Fault Tree Model for Reliability Evaluation of Smart Grids," Energies, MDPI, vol. 7(8), pages 1-23, July.
    4. Ricardo Vazquez & Hortensia Amaris & Monica Alonso & Gregorio Lopez & Jose Ignacio Moreno & Daniel Olmeda & Javier Coca, 2017. "Assessment of an Adaptive Load Forecasting Methodology in a Smart Grid Demonstration Project," Energies, MDPI, vol. 10(2), pages 1-23, February.
    5. Pau Lloret-Gallego & Mònica Aragüés-Peñalba & Lien Van Schepdael & Eduard Bullich-Massagué & Pol Olivella-Rosell & Andreas Sumper, 2017. "Methodology for the Evaluation of Resilience of ICT Systems for Smart Distribution Grids," Energies, MDPI, vol. 10(9), pages 1-16, August.
    6. Xenias, Dimitrios & Axon, Colin J. & Whitmarsh, Lorraine & Connor, Peter M. & Balta-Ozkan, Nazmiye & Spence, Alexa, 2015. "UK smart grid development: An expert assessment of the benefits, pitfalls and functions," Renewable Energy, Elsevier, vol. 81(C), pages 89-102.
    7. Peng, Hao & Kan, Zhe & Zhao, Dandan & Han, Jianmin & Lu, Jianfeng & Hu, Zhaolong, 2018. "Reliability analysis in interdependent smart grid systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 50-59.
    8. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2014. "A mathematical model for the optimal operation of the University of Genoa Smart Polygeneration Microgrid: Evaluation of technical, economic and environmental performance indicators," Energy, Elsevier, vol. 64(C), pages 912-922.
    9. Xuan Liu & Xingdong Liu & Zuyi Li, 2015. "Cyber Risk Assessment of Transmission Lines in Smart Grids," Energies, MDPI, vol. 8(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinoth Kumar Ponnusamy & Padmanathan Kasinathan & Rajvikram Madurai Elavarasan & Vinoth Ramanathan & Ranjith Kumar Anandan & Umashankar Subramaniam & Aritra Ghosh & Eklas Hossain, 2021. "A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid," Sustainability, MDPI, vol. 13(23), pages 1-35, December.
    2. Weiwei Liu & Yuan Tao & Zhile Yang & Kexin Bi, 2019. "Exploring and Visualizing the Patent Collaboration Network: A Case Study of Smart Grid Field in China," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    3. Lilia Tightiz & Hyosik Yang, 2020. "A Comprehensive Review on IoT Protocols’ Features in Smart Grid Communication," Energies, MDPI, vol. 13(11), pages 1-24, June.
    4. Oleksii Lyulyov & Ihor Vakulenko & Tetyana Pimonenko & Aleksy Kwilinski & Henryk Dzwigol & Mariola Dzwigol-Barosz, 2021. "Comprehensive Assessment of Smart Grids: Is There a Universal Approach?," Energies, MDPI, vol. 14(12), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrique Personal & Antonio García & Antonio Parejo & Diego Francisco Larios & Félix Biscarri & Carlos León, 2016. "A Comparison of Impedance-Based Fault Location Methods for Power Underground Distribution Systems," Energies, MDPI, vol. 9(12), pages 1-30, December.
    2. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    3. Moretti, M. & Djomo, S. Njakou & Azadi, H. & May, K. & De Vos, K. & Van Passel, S. & Witters, N., 2017. "A systematic review of environmental and economic impacts of smart grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 888-898.
    4. Gisliany Alves & Danielle Marques & Ivanovitch Silva & Luiz Affonso Guedes & Maria da Guia da Silva, 2019. "A Methodology for Dependability Evaluation of Smart Grids," Energies, MDPI, vol. 12(9), pages 1-23, May.
    5. Lamnatou, Chr. & Chemisana, D. & Cristofari, C., 2022. "Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment," Renewable Energy, Elsevier, vol. 185(C), pages 1376-1391.
    6. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    7. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    8. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    9. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    10. Maroufmashat, Azadeh & Elkamel, Ali & Fowler, Michael & Sattari, Sourena & Roshandel, Ramin & Hajimiragha, Amir & Walker, Sean & Entchev, Evgueniy, 2015. "Modeling and optimization of a network of energy hubs to improve economic and emission considerations," Energy, Elsevier, vol. 93(P2), pages 2546-2558.
    11. Shahid Nawaz Khan & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Mohammed A. Alghassab, 2022. "Smart Distribution Mechanisms—Part I: From the Perspectives of Planning," Sustainability, MDPI, vol. 14(23), pages 1-109, December.
    12. Good, Nicholas & Martínez Ceseña, Eduardo A. & Zhang, Lingxi & Mancarella, Pierluigi, 2016. "Techno-economic and business case assessment of low carbon technologies in distributed multi-energy systems," Applied Energy, Elsevier, vol. 167(C), pages 158-172.
    13. Liu, Xiufeng & Nielsen, Per Sieverts, 2016. "A hybrid ICT-solution for smart meter data analytics," Energy, Elsevier, vol. 115(P3), pages 1710-1722.
    14. Ricardo Echeverri Mart nez & Eduardo Caicedo Bravo & Wilfredo Alfonso Morales & Juan David Garcia-Racines, 2020. "A Bi-level Multi-objective Optimization Model for the Planning, Design and Operation of Smart Grid Projects. Case Study: An Islanded Microgrid," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 325-341.
    15. Huiru Zhao & Nana Li, 2016. "Performance Evaluation for Sustainability of Strong Smart Grid by Using Stochastic AHP and Fuzzy TOPSIS Methods," Sustainability, MDPI, vol. 8(2), pages 1-22, January.
    16. Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
    17. Rohde, Friederike & Quitzow, Leslie, 2021. "Digitale Energiezukünfte und ihre Wirkungsmacht: Visionen der smarten Energieversorgung zwischen Technikoptimismus und Nachhaltigkeit," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, pages 189-211.
    18. Kuei-Hu Chang, 2022. "A novel reliability calculation method under neutrosophic environments," Annals of Operations Research, Springer, vol. 315(2), pages 1599-1615, August.
    19. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    20. Khazaei, Javad & Amini, M. Hadi, 2021. "Protection of large-scale smart grids against false data injection cyberattacks leading to blackouts," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4047-:d:180651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.