IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p3966-d179417.html
   My bibliography  Save this article

Interlinked Sustainability Aspects of Low-Rise Residential Family House Development in Slovakia

Author

Listed:
  • Silvia Vilčeková

    (Institute of Environmental Engineering, Faculty of Civil Engineering, Technical University of Kosice, Vysokoskolska 4, 042 00 Kosice, Slovakia)

  • Iveta Selecká

    (Institute of Environmental Engineering, Faculty of Civil Engineering, Technical University of Kosice, Vysokoskolska 4, 042 00 Kosice, Slovakia)

  • Eva Krídlová Burdová

    (Institute of Environmental Engineering, Faculty of Civil Engineering, Technical University of Kosice, Vysokoskolska 4, 042 00 Kosice, Slovakia)

  • Ľudmila Mečiarová

    (Institute of Environmental Engineering, Faculty of Civil Engineering, Technical University of Kosice, Vysokoskolska 4, 042 00 Kosice, Slovakia)

Abstract

This paper compares the sustainability aspects of three family houses according to the Slovak building environmental assessment system (BEAS). Various categories of family houses were evaluated, including site selection, project planning, building construction, indoor environment, energy performance, and water and waste management. Based on the results, Family Houses 3 and 2 are certified as BEAS SILVER, with scores of 2.46 and 2.01, respectively. Family House 1 is certified as BEAS BRONZE, with an overall score of 1.44. The results show, not only the importance of the site in terms of availability, connectivity to the network and the potential to use renewable energy sources, but also the importance of the design and construction of the building, including the application of environmentally friendly building materials, ensuring the quality of the indoor environment and the energy efficiency of the building. The aims of this study were to highlight the current trend in the design and construction of low-rise residential family houses in Slovakia and to identify gaps in the design and construction of key sustainability aspects through the existing building environmental assessment system. In the future, many low-rise residential family houses will be assessed to modify and validate BEAS.

Suggested Citation

  • Silvia Vilčeková & Iveta Selecká & Eva Krídlová Burdová & Ľudmila Mečiarová, 2018. "Interlinked Sustainability Aspects of Low-Rise Residential Family House Development in Slovakia," Sustainability, MDPI, vol. 10(11), pages 1-28, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:3966-:d:179417
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/3966/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/3966/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rincón, Lídia & Castell, Albert & Pérez, Gabriel & Solé, Cristian & Boer, Dieter & Cabeza, Luisa F., 2013. "Evaluation of the environmental impact of experimental buildings with different constructive systems using Material Flow Analysis and Life Cycle Assessment," Applied Energy, Elsevier, vol. 109(C), pages 544-552.
    2. Silvia Vilčeková & Monika Čuláková & Eva Krídlová Burdová & Jana Katunská, 2015. "Energy and Environmental Evaluation of Non-Transparent Constructions of Building Envelope for Wooden Houses," Energies, MDPI, vol. 8(10), pages 1-29, October.
    3. Rastogi, Ankush & Choi, Jun-Ki & Hong, Taehoon & Lee, Minhyun, 2017. "Impact of different LEED versions for green building certification and energy efficiency rating system: A Multifamily Midrise case study," Applied Energy, Elsevier, vol. 205(C), pages 732-740.
    4. Abdel Aleem, Shady H.E. & Zobaa, Ahmed F. & Abdel Mageed, Hala M., 2015. "Assessment of energy credits for the enhancement of the Egyptian Green Pyramid Rating System," Energy Policy, Elsevier, vol. 87(C), pages 407-416.
    5. Umberto Berardi, 2012. "Sustainability Assessment in the Construction Sector: Rating Systems and Rated Buildings," Sustainable Development, John Wiley & Sons, Ltd., vol. 20(6), pages 411-424, November.
    6. Krarti, Moncef & Dubey, Kankana & Howarth, Nicholas, 2017. "Evaluation of building energy efficiency investment options for the Kingdom of Saudi Arabia," Energy, Elsevier, vol. 134(C), pages 595-610.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eva Krídlová Burdová & Iveta Selecká & Silvia Vilčeková & Dušan Burák & Anna Sedláková, 2020. "Evaluation of Family Houses in Slovakia Using a Building Environmental Assessment System," Sustainability, MDPI, vol. 12(16), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ole Øiene Smedegård & Thomas Jonsson & Bjørn Aas & Jørn Stene & Laurent Georges & Salvatore Carlucci, 2021. "The Implementation of Multiple Linear Regression for Swimming Pool Facilities: Case Study at Jøa, Norway," Energies, MDPI, vol. 14(16), pages 1-24, August.
    2. Lihua Liang & Baohua Wen & Feng Xu & Jianwei Yan & Xiangqi Yan & S. Ramesh, 2021. "Linking the Development of Building Sustainability Assessment Tools with the Concept Evolution of Sustainable Buildings," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    3. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    4. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    5. Mohammad S. M. Almulhim & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Resilience and Environmentally Sustainable Assessment Framework (RESAF) for Domestic Building Materials in Saudi Arabia," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    6. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    7. Chandratilake, S.R. & Dias, W.P.S., 2013. "Sustainability rating systems for buildings: Comparisons and correlations," Energy, Elsevier, vol. 59(C), pages 22-28.
    8. Norasikin Ahmad Ludin & Nurfarhana Alyssa Ahmad Affandi & Kathleen Purvis-Roberts & Azah Ahmad & Mohd Adib Ibrahim & Kamaruzzaman Sopian & Sufian Jusoh, 2021. "Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach," Sustainability, MDPI, vol. 13(1), pages 1-21, January.
    9. Adriana Estokova & Marcela Ondova & Martina Wolfova & Alena Paulikova & Stanislav Toth, 2019. "Examination of Bearing Walls Regarding Their Environmental Performance," Energies, MDPI, vol. 12(2), pages 1-27, January.
    10. Soad Abokhamis Mousavi & Ercan Hoşkara & Kyle M. Woosnam, 2017. "Developing a Model for Sustainable Hotels in Northern Cyprus," Sustainability, MDPI, vol. 9(11), pages 1-23, November.
    11. Reem F. Alruwaili & Nourah Alsadaan & Abeer Nuwayfi Alruwaili & Afrah Ghazi Alrumayh, 2023. "Unveiling the Symbiosis of Environmental Sustainability and Infection Control in Health Care Settings: A Systematic Review," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    12. Muhammad Talha Siddique & Paraskevas Koukaras & Dimosthenis Ioannidis & Christos Tjortjis, 2023. "A Methodology Integrating the Quantitative Assessment of Energy Efficient Operation and Occupant Needs into the Smart Readiness Indicator," Energies, MDPI, vol. 16(19), pages 1-15, October.
    13. Wahhaj Ahmed & Ayman Alazazmeh & Muhammad Asif, 2022. "Energy and Water Saving Potential in Commercial Buildings: A Retrofit Case Study," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    14. Michel Noussan & Benedetto Nastasi, 2018. "Data Analysis of Heating Systems for Buildings—A Tool for Energy Planning, Policies and Systems Simulation," Energies, MDPI, vol. 11(1), pages 1-15, January.
    15. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    16. Umberto Berardi, 2013. "Sustainability assessment of urban communities through rating systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(6), pages 1573-1591, December.
    17. Xiaonuan Sun & Zhonghua Gou & Yi Lu & Yiqi Tao, 2018. "Strengths and Weaknesses of Existing Building Green Retrofits: Case Study of a LEED EBOM Gold Project," Energies, MDPI, vol. 11(8), pages 1-18, July.
    18. Ziad M. Ali & Shady H. E. Abdel Aleem & Ahmed I. Omar & Bahaa Saad Mahmoud, 2022. "Economical-Environmental-Technical Operation of Power Networks with High Penetration of Renewable Energy Systems Using Multi-Objective Coronavirus Herd Immunity Algorithm," Mathematics, MDPI, vol. 10(7), pages 1-43, April.
    19. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    20. Danny Lobos Calquín & Ramón Mata & Juan Carlos Vielma & Juan Carlos Beaumont-Sepulveda & Claudio Correa & Eduardo Nuñez & Eric Forcael & David Blanco & Pablo Pulgar, 2024. "A Simplified Framework to Integrate Databases with Building Information Modeling for Building Energy Assessment in Multi-Climate Zones," Sustainability, MDPI, vol. 16(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:3966-:d:179417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.