IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i10p11047-11075d56731.html
   My bibliography  Save this article

Energy and Environmental Evaluation of Non-Transparent Constructions of Building Envelope for Wooden Houses

Author

Listed:
  • Silvia Vilčeková

    (Institute of Environmental Engineering, Technical University of Kosice, Vysokoškolská 4, Košice 042 00, Slovakia)

  • Monika Čuláková

    (Institute of Architectural Engineering, Technical University of Kosice, Vysokoškolská 4, Košice 042 00, Slovakia)

  • Eva Krídlová Burdová

    (Institute of Environmental Engineering, Technical University of Kosice, Vysokoškolská 4, Košice 042 00, Slovakia)

  • Jana Katunská

    (Institute of Architectural Engineering, Technical University of Kosice, Vysokoškolská 4, Košice 042 00, Slovakia)

Abstract

The contribution of embodied energy (EE) and greenhouse gas emissions to building materials and structures has been recognized as significant, especially for nearly-zero energy-efficient buildings. The aim of this paper is to evaluate the composition of non-transparent structures of building envelopes from energy and environmental perspectives using the life-cycle assessment method. The study assesses environmental indicators such as EE from non-renewable resources and CO 2eq and SO 2eq emissions from proposed assemblies of building structures for nearly-zero energy wooden houses. Material compositions are also calculated in terms of selected thermal-physical aspects (U-value, phase shift of thermal oscillation, relaxation time) to ensure the reduction of energy consumption during building operation. All results are compared using a multi-dimensional evaluation approach through mathematical methods. The multi-criteria decision analysis demonstrates that material optimization of building structures is possible to ensure a marked reduction of the energy consumption and carbon footprint of buildings.

Suggested Citation

  • Silvia Vilčeková & Monika Čuláková & Eva Krídlová Burdová & Jana Katunská, 2015. "Energy and Environmental Evaluation of Non-Transparent Constructions of Building Envelope for Wooden Houses," Energies, MDPI, vol. 8(10), pages 1-29, October.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:11047-11075:d:56731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/10/11047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/10/11047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    2. Jukka Heinonen & Antti-Juhani Säynäjoki & Matti Kuronen & Seppo Junnila, 2012. "Are the Greenhouse Gas Implications of New Residential Developments Understood Wrongly?," Energies, MDPI, vol. 5(8), pages 1-20, August.
    3. Hui, Sam C.M, 2001. "Low energy building design in high density urban cities," Renewable Energy, Elsevier, vol. 24(3), pages 627-640.
    4. Borjesson, Pal & Gustavsson, Leif, 2000. "Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives," Energy Policy, Elsevier, vol. 28(9), pages 575-588, July.
    5. Dowson, Mark & Grogan, Michael & Birks, Tim & Harrison, David & Craig, Salmaan, 2012. "Streamlined life cycle assessment of transparent silica aerogel made by supercritical drying," Applied Energy, Elsevier, vol. 97(C), pages 396-404.
    6. Azra Korjenic & Sanela Klarić & Almedina Hadžić & Sinan Korjenic, 2015. "Sheep Wool as a Construction Material for Energy Efficiency Improvement," Energies, MDPI, vol. 8(6), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diana Carolina Gámez-García & Héctor Saldaña-Márquez & José Manuel Gómez-Soberón & Susana Paola Arredondo-Rea & María Consolación Gómez-Soberón & Ramón Corral-Higuera, 2019. "Environmental Challenges in the Residential Sector: Life Cycle Assessment of Mexican Social Housing," Energies, MDPI, vol. 12(14), pages 1-24, July.
    2. Silvia Vilčeková & Iveta Selecká & Eva Krídlová Burdová & Ľudmila Mečiarová, 2018. "Interlinked Sustainability Aspects of Low-Rise Residential Family House Development in Slovakia," Sustainability, MDPI, vol. 10(11), pages 1-28, October.
    3. Adriana Estokova & Marcela Ondova & Martina Wolfova & Alena Paulikova & Stanislav Toth, 2019. "Examination of Bearing Walls Regarding Their Environmental Performance," Energies, MDPI, vol. 12(2), pages 1-27, January.
    4. Ángel Gómez-Moreno & Pedro José Casanova-Peláez & José Manuel Palomar-Carnicero & Fernando Cruz-Peragón, 2016. "Modeling and Experimental Validation of a Low-Cost Radiation Sensor Based on the Photovoltaic Effect for Building Applications," Energies, MDPI, vol. 9(11), pages 1-16, November.
    5. Marek Potkány & Miloš Gejdoš & Marek Debnár, 2018. "Sustainable Innovation Approach for Wood Quality Evaluation in Green Business," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
    6. Anna Laura Pisello & Claudia Fabiani & Nastaran Makaremi & Veronica Lucia Castaldo & Gianluca Cavalaglio & Andrea Nicolini & Marco Barbanera & Franco Cotana, 2016. "Sustainable New Brick and Thermo-Acoustic Insulation Panel from Mineralization of Stranded Driftwood Residues," Energies, MDPI, vol. 9(8), pages 1-20, August.
    7. Francesco Asdrubali & Luca Evangelisti & Claudia Guattari & Marta Roncone & Daniele Milone, 2023. "Experimental Analysis of the Thermal Performance of Wood Fiber Insulating Panels," Sustainability, MDPI, vol. 15(3), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    2. P. Giovani Palafox-Alcantar & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Hybrid Methodology to Study Stakeholder Cooperation in Circular Economy Waste Management of Cities," Energies, MDPI, vol. 13(7), pages 1-30, April.
    3. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    4. Karel Struhala & Miroslav Čekon & Richard Slávik, 2018. "Life Cycle Assessment of Solar Façade Concepts Based on Transparent Insulation Materials," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    5. Michael O. Ukoba & Ogheneruona E. Diemuodeke & Mohammed Alghassab & Henry I. Njoku & Muhammad Imran & Zafar A. Khan, 2020. "Composite Multi-Criteria Decision Analysis for Optimization of Hybrid Renewable Energy Systems for Geopolitical Zones in Nigeria," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    6. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    7. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    8. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    9. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    10. Duck Bong Kim, 2019. "An approach for composing predictive models from disparate knowledge sources in smart manufacturing environments," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1999-2012, April.
    11. Cowan, Kelly & Daim, Tugrul & Anderson, Tim, 2010. "Exploring the impact of technology development and adoption for sustainable hydroelectric power and storage technologies in the Pacific Northwest United States," Energy, Elsevier, vol. 35(12), pages 4771-4779.
    12. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    13. Haddad, Brahim & Liazid, Abdelkrim & Ferreira, Paula, 2017. "A multi-criteria approach to rank renewables for the Algerian electricity system," Renewable Energy, Elsevier, vol. 107(C), pages 462-472.
    14. Chihiro Kayo & Ryu Noda, 2018. "Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    15. Ewa Roszkowska & Bartłomiej Jefmański, 2021. "Interval-Valued Intuitionistic Fuzzy Synthetic Measure (I-VIFSM) Based on Hellwig’s Approach in the Analysis of Survey Data," Mathematics, MDPI, vol. 9(3), pages 1-17, January.
    16. Manley, Dawn K. & Hines, Valerie A. & Jordan, Matthew W. & Stoltz, Ronald E., 2013. "A survey of energy policy priorities in the United States: Energy supply security, economics, and the environment," Energy Policy, Elsevier, vol. 60(C), pages 687-696.
    17. Venmans, Frank, 2012. "A literature-based multi-criteria evaluation of the EU ETS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5493-5510.
    18. Hye Yeon Kim & Hae Jin Kang, 2016. "A Study on Development of a Cost Optimal and Energy Saving Building Model: Focused on Industrial Building," Energies, MDPI, vol. 9(3), pages 1-19, March.
    19. Stanislav Shmelev & Harrison Roger Brook, 2021. "Macro Sustainability across Countries: Key Sector Environmentally Extended Input-Output Analysis," Sustainability, MDPI, vol. 13(21), pages 1-46, October.
    20. Dianfa Wu & Zhiping Yang & Ningling Wang & Chengzhou Li & Yongping Yang, 2018. "An Integrated Multi-Criteria Decision Making Model and AHP Weighting Uncertainty Analysis for Sustainability Assessment of Coal-Fired Power Units," Sustainability, MDPI, vol. 10(6), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:11047-11075:d:56731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.