Extended Conway-Maxwell-Poisson distribution and its properties and applications
Author
Abstract
Suggested Citation
DOI: 10.1186/s40488-016-0044-1
Download full text from publisher
References listed on IDEAS
- Gómez-Déniz, Emilio & Sarabia, José María & Calderín-Ojeda, Enrique, 2011. "A new discrete distribution with actuarial applications," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 406-412, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Boris Forthmann & Philipp Doebler, 2021. "Reliability of researcher capacity estimates and count data dispersion: a comparison of Poisson, negative binomial, and Conway-Maxwell-Poisson models," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3337-3354, April.
- Seng Huat Ong & Shin Zhu Sim & Shuangzhe Liu & Hari M. Srivastava, 2023. "A Family of Finite Mixture Distributions for Modelling Dispersion in Count Data," Stats, MDPI, vol. 6(3), pages 1-14, September.
- Geng, Xi & Xia, Aihua, 2022. "When is the Conway–Maxwell–Poisson distribution infinitely divisible?," Statistics & Probability Letters, Elsevier, vol. 181(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Xiaobing & Zhou, Xian, 2012. "Copula models for insurance claim numbers with excess zeros and time-dependence," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 191-199.
- Zhang, Huiming & Liu, Yunxiao & Li, Bo, 2014. "Notes on discrete compound Poisson model with applications to risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 325-336.
- Fatimah E. Almuhayfith & Sudeep R. Bapat & Hassan S. Bakouch & Aminh M. Alnaghmosh, 2023. "A Flexible Semi-Poisson Distribution with Applications to Insurance Claims and Biological Data," Mathematics, MDPI, vol. 11(5), pages 1-15, February.
More about this item
Keywords
COM-Poisson; COM-Negative binomial; Generalized COM-Poisson; State dependent service and arrival rate Queues; Laplace method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jstada:v:3:y:2016:i:1:d:10.1186_s40488-016-0044-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.