IDEAS home Printed from https://ideas.repec.org/a/wly/apsmbi/v28y2012i2p104-116.html
   My bibliography  Save this article

The COM‐Poisson model for count data: a survey of methods and applications

Author

Listed:
  • Kimberly F. Sellers
  • Sharad Borle
  • Galit Shmueli

Abstract

The Poisson distribution is a popular distribution for modeling count data, yet it is constrained by its equidispersion assumption, making it less than ideal for modeling real data that often exhibit over‐dispersion or under‐dispersion. The COM‐Poisson distribution is a two‐parameter generalization of the Poisson distribution that allows for a wide range of over‐dispersion and under‐dispersion. It not only generalizes the Poisson distribution but also contains the Bernoulli and geometric distributions as special cases. This distribution's flexibility and special properties have prompted a fast growth of methodological and applied research in various fields. This paper surveys the different COM‐Poisson models that have been published thus far and their applications in areas including marketing, transportation, and biology, among others. Copyright © 2011 John Wiley & Sons, Ltd.

Suggested Citation

  • Kimberly F. Sellers & Sharad Borle & Galit Shmueli, 2012. "The COM‐Poisson model for count data: a survey of methods and applications," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 28(2), pages 104-116, March.
  • Handle: RePEc:wly:apsmbi:v:28:y:2012:i:2:p:104-116
    DOI: 10.1002/asmb.918
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asmb.918
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asmb.918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bedbur, S. & Kamps, U., 2023. "Uniformly most powerful unbiased tests for the dispersion parameter of the Conway–Maxwell–Poisson distribution," Statistics & Probability Letters, Elsevier, vol. 196(C).
    2. Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
    3. Douglas Toledo & Cristiane Akemi Umetsu & Antonio Fernando Monteiro Camargo & Idemauro Antonio Rodrigues Lara, 2022. "Flexible models for non-equidispersed count data: comparative performance of parametric models to deal with underdispersion," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 473-497, September.
    4. Seng Huat Ong & Shin Zhu Sim & Shuangzhe Liu & Hari M. Srivastava, 2023. "A Family of Finite Mixture Distributions for Modelling Dispersion in Count Data," Stats, MDPI, vol. 6(3), pages 1-14, September.
    5. Morris, Darcy Steeg & Raim, Andrew M. & Sellers, Kimberly F., 2020. "A Conway–Maxwell-multinomial distribution for flexible modeling of clustered categorical data," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    6. Geng, Xi & Xia, Aihua, 2022. "When is the Conway–Maxwell–Poisson distribution infinitely divisible?," Statistics & Probability Letters, Elsevier, vol. 181(C).
    7. Muhammed Rasheed Irshad & Sreedeviamma Aswathy & Radhakumari Maya & Saralees Nadarajah, 2023. "New One-Parameter Over-Dispersed Discrete Distribution and Its Application to the Nonnegative Integer-Valued Autoregressive Model of Order One," Mathematics, MDPI, vol. 12(1), pages 1-14, December.
    8. Xun-Jian Li & Guo-Liang Tian & Mingqian Zhang & George To Sum Ho & Shuang Li, 2023. "Modeling Under-Dispersed Count Data by the Generalized Poisson Distribution via Two New MM Algorithms," Mathematics, MDPI, vol. 11(6), pages 1-24, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:apsmbi:v:28:y:2012:i:2:p:104-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1526-4025 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.