IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v5y2022i1p5-88d721120.html
   My bibliography  Save this article

A Noncentral Lindley Construction Illustrated in an INAR(1) Environment

Author

Listed:
  • Johannes Ferreira

    (Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa
    Centre of Excellence in Mathematical and Statistical Sciences, Johannesburg 2050, South Africa)

  • Ané van der Merwe

    (Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa)

Abstract

This paper proposes a previously unconsidered generalization of the Lindley distribution by allowing for a measure of noncentrality. Essential structural characteristics are investigated and derived in explicit and tractable forms, and the estimability of the model is illustrated via the fit of this developed model to real data. Subsequently, this model is used as a candidate for the parameter of a Poisson model, which allows for departure from the usual equidispersion restriction that the Poisson offers when modelling count data. This Poisson-noncentral Lindley is also systematically investigated and characteristics are derived. The value of this count model is illustrated and implemented as the count error distribution in an integer autoregressive environment, and juxtaposed against other popular models. The effect of the systematically-induced noncentrality parameter is illustrated and paves the way for future flexible modelling not only as a standalone contender in continuous Lindley-type scenarios but also in discrete and discrete time series scenarios when the often-encountered equidispersed assumption is not adhered to in practical data environments.

Suggested Citation

  • Johannes Ferreira & Ané van der Merwe, 2022. "A Noncentral Lindley Construction Illustrated in an INAR(1) Environment," Stats, MDPI, vol. 5(1), pages 1-19, January.
  • Handle: RePEc:gam:jstats:v:5:y:2022:i:1:p:5-88:d:721120
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/5/1/5/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/5/1/5/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. E. Ghitany & D. K. Al-Mutairi, 2008. "Size-biased Poisson-Lindley distribution and its application," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 299-311.
    2. A. Alzaid & M. Al‐Osh, 1988. "First‐Order Integer‐Valued Autoregressive (INAR (1)) Process: Distributional and Regression Properties," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 42(1), pages 53-61, March.
    3. Christian Weiß, 2008. "Thinning operations for modeling time series of counts—a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 319-341, August.
    4. Nosakhare Ekhosuehi & Festus Opone, 2018. "A Three Parameter Generalized Lindley Distribution: Properties And Application," Statistica, Department of Statistics, University of Bologna, vol. 78(3), pages 233-249.
    5. Tito Lívio & Naushad Mamode Khan & Marcelo Bourguignon & Hassan S. Bakouch, 2018. "An INAR(1) model with Poisson-Lindley innovations," Economics Bulletin, AccessEcon, vol. 38(3), pages 1505-1513.
    6. M. A. Al‐Osh & A. A. Alzaid, 1987. "First‐Order Integer‐Valued Autoregressive (Inar(1)) Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 261-275, May.
    7. Izabela Oliveira & Daniel Ferreira, 2013. "Computing the noncentral gamma distribution, its inverse and the noncentrality parameter," Computational Statistics, Springer, vol. 28(4), pages 1663-1680, August.
    8. Ghitany, M.E. & Al-Mutairi, D.K. & Nadarajah, S., 2008. "Zero-truncated Poisson–Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 279-287.
    9. Ghitany, M.E. & Atieh, B. & Nadarajah, S., 2008. "Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 493-506.
    10. M. M. E. Abd El-Monsef, 2016. "A new Lindley distribution with location parameter," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(17), pages 5204-5219, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ané van der Merwe & Johannes T. Ferreira, 2022. "An Adapted Discrete Lindley Model Emanating from Negative Binomial Mixtures for Autoregressive Counts," Mathematics, MDPI, vol. 10(21), pages 1-21, November.
    2. Mario A. Rojas & Yuri A. Iriarte, 2022. "A Lindley-Type Distribution for Modeling High-Kurtosis Data," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    3. Hurairah Ahmed & Alabid Abdelhakim, 2020. "Beta transmuted Lomax distribution with applications," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 13-34, June.
    4. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    5. Cha, Ji Hwan, 2019. "Poisson Lindley process and its main properties," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 74-81.
    6. Irshad M. R. & Maya R., 2018. "On A Less Cumbersome Method Of Estimation Of Parameters Of Lindley Distribution By Order Statistics," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 597-620, December.
    7. Yaoting Yang & Weizhong Tian & Tingting Tong, 2021. "Generalized Mixtures of Exponential Distribution and Associated Inference," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    8. Mehdi Jabbari Nooghabi, 2021. "Comparing estimation of the parameters of distribution of the root density of plants in the presence of outliers," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    9. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    10. Ahlam H. Tolba & Chrisogonus K. Onyekwere & Ahmed R. El-Saeed & Najwan Alsadat & Hanan Alohali & Okechukwu J. Obulezi, 2023. "A New Distribution for Modeling Data with Increasing Hazard Rate: A Case of COVID-19 Pandemic and Vinyl Chloride Data," Sustainability, MDPI, vol. 15(17), pages 1-31, August.
    11. Devendra Kumar & Anju Goyal, 2019. "Generalized Lindley Distribution Based on Order Statistics and Associated Inference with Application," Annals of Data Science, Springer, vol. 6(4), pages 707-736, December.
    12. Jiaxin Nie & Wenhao Gui, 2019. "Parameter Estimation of Lindley Distribution Based on Progressive Type-II Censored Competing Risks Data with Binomial Removals," Mathematics, MDPI, vol. 7(7), pages 1-15, July.
    13. Patawa, Rohit & Pundir, Pramendra Singh, 2023. "Inferential study of single unit repairable system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 503-516.
    14. Deepesh Bhati & Mohd. Malik & H. Vaman, 2015. "Lindley–Exponential distribution: properties and applications," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 335-357, December.
    15. Singh, Bhupendra & Gupta, Puneet Kumar, 2012. "Load-sharing system model and its application to the real data set," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1615-1629.
    16. Festus C. Opone & Nosakhare Ekhosuehi & Sunday E. Omosigho, 2022. "Topp-Leone Power Lindley Distribution(Tlpld): its Properties and Application," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 597-608, August.
    17. A. Asgharzadeh & A. Fallah & M. Z. Raqab & R. Valiollahi, 2018. "Statistical inference based on Lindley record data," Statistical Papers, Springer, vol. 59(2), pages 759-779, June.
    18. Marius Giuclea & Costin-Ciprian Popescu, 2022. "On Geometric Mean and Cumulative Residual Entropy for Two Random Variables with Lindley Type Distribution," Mathematics, MDPI, vol. 10(9), pages 1-10, April.
    19. Manal M. Yousef & Amal S. Hassan & Abdullah H. Al-Nefaie & Ehab M. Almetwally & Hisham M. Almongy, 2022. "Bayesian Estimation Using MCMC Method of System Reliability for Inverted Topp–Leone Distribution Based on Ranked Set Sampling," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    20. M. R. Irshad & R. Maya, 2018. "On A Less Cumbersome Method Of Estimation Of Parameters Of Lindley Distribution By Order Statistics," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 597-620, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:5:y:2022:i:1:p:5-88:d:721120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.