IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v3y2020i1p5-55d330743.html
   My bibliography  Save this article

On Some Test Statistics for Testing the Regression Coefficients in Presence of Multicollinearity: A Simulation Study

Author

Listed:
  • Sergio Perez-Melo

    (Department of Mathematics and Statistics, Florida International University, University Park, Miami, FL 33199, USA)

  • B. M. Golam Kibria

    (Department of Mathematics and Statistics, Florida International University, University Park, Miami, FL 33199, USA)

Abstract

Ridge regression is a popular method to solve the multicollinearity problem for both linear and non-linear regression models. This paper studied forty different ridge regression t -type tests of the individual coefficients of a linear regression model. A simulation study was conducted to evaluate the performance of the proposed tests with respect to their empirical sizes and powers under different settings. Our simulation results demonstrated that many of the proposed tests have type I error rates close to the 5% nominal level and, among those, all tests except one have considerable gain in powers over the standard ordinary least squares (OLS) t -type test. It was observed from our simulation results that seven tests based on some ridge estimators performed better than the rest in terms of achieving higher power gains while maintaining a 5% nominal size.

Suggested Citation

  • Sergio Perez-Melo & B. M. Golam Kibria, 2020. "On Some Test Statistics for Testing the Regression Coefficients in Presence of Multicollinearity: A Simulation Study," Stats, MDPI, vol. 3(1), pages 1-16, March.
  • Handle: RePEc:gam:jstats:v:3:y:2020:i:1:p:5-55:d:330743
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/3/1/5/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/3/1/5/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Norouzirad & M. Arashi, 2019. "Preliminary test and Stein-type shrinkage ridge estimators in robust regression," Statistical Papers, Springer, vol. 60(6), pages 1849-1882, December.
    2. R. Fallah & M. Arashi & S. M. M. Tabatabaey, 2017. "On the ridge regression estimator with sub-space restriction," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(23), pages 11854-11865, December.
    3. Roozbeh, M. & Arashi, M., 2013. "Feasible ridge estimator in partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 35-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Usman Arshad & Muhammad Nadir Shabbir & Momna Niazi, 2023. "Trade Openness and Public Innovation: A Causality Analysis," SAGE Open, , vol. 13(3), pages 21582440231, September.
    2. Jinse Jacob & R. Varadharajan, 2023. "Simultaneous raise regression: a novel approach to combating collinearity in linear regression models," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(5), pages 4365-4386, October.
    3. Muhammad Nadir Shabbir & Muhammad Usman Arshad & Muhammad Amir Alvi & Kainat Iftikhar, 2022. "Impact of Trade Policy Uncertainty and Sustainable Development on Medical Innovation for Developed Countries: An Application of DID Approach," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    4. Muhammad Nadir Shabbir & Wang Liyong & Muhammad Usman Arshad, 2022. "Trade Policy Uncertainty and Medical Innovation: Evidence from Developing Nations," Economies, MDPI, vol. 10(9), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Li & Xueyan Li, 2019. "Liu Estimator in Semiparametric Partially Linear Varying Coefficient Models," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(6), pages 1-69, November.
    2. Roozbeh, Mahdi, 2018. "Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 45-61.
    3. Hirofumi Michimae & Takeshi Emura, 2022. "Bayesian ridge estimators based on copula-based joint prior distributions for regression coefficients," Computational Statistics, Springer, vol. 37(5), pages 2741-2769, November.
    4. M. Arashi & Mahdi Roozbeh, 2019. "Some improved estimation strategies in high-dimensional semiparametric regression models with application to riboflavin production data," Statistical Papers, Springer, vol. 60(3), pages 667-686, June.
    5. M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
    6. Roozbeh, Mahdi, 2016. "Robust ridge estimator in restricted semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 127-144.
    7. Zhao, Yan-Yong & Zhang, Yuchun & Liu, Yuan & Ismail, Noriszura, 2024. "Distributed debiased estimation of high-dimensional partially linear models with jumps," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    8. J. Kleyn & M. Arashi & S. Millard, 2018. "Preliminary test estimation in system regression models in view of asymmetry," Computational Statistics, Springer, vol. 33(4), pages 1897-1921, December.
    9. Fikri Akdeniz & Mahdi Roozbeh, 2019. "Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models," Statistical Papers, Springer, vol. 60(5), pages 1717-1739, October.
    10. Jan Pablo Burgard & Joscha Krause & Dennis Kreber & Domingo Morales, 2021. "The generalized equivalence of regularization and min–max robustification in linear mixed models," Statistical Papers, Springer, vol. 62(6), pages 2857-2883, December.
    11. M. Arashi & T. Valizadeh, 2015. "Performance of Kibria’s methods in partial linear ridge regression model," Statistical Papers, Springer, vol. 56(1), pages 231-246, February.
    12. M. Revan Özkale & Hans Nyquist, 2021. "The stochastic restricted ridge estimator in generalized linear models," Statistical Papers, Springer, vol. 62(3), pages 1421-1460, June.
    13. Chuanhua Wei & Xiaonan Wang, 2016. "Liu-type estimator in semiparametric partially linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 459-468, September.
    14. Waleed B. Altukhaes & Mahdi Roozbeh & Nur A. Mohamed, 2024. "Robust Liu Estimator Used to Combat Some Challenges in Partially Linear Regression Model by Improving LTS Algorithm Using Semidefinite Programming," Mathematics, MDPI, vol. 12(17), pages 1-23, September.
    15. Amini, Morteza & Roozbeh, Mahdi, 2015. "Optimal partial ridge estimation in restricted semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 26-40.
    16. Bahadır Yüzbaşı & S. Ejaz Ahmed & Dursun Aydın, 2020. "Ridge-type pretest and shrinkage estimations in partially linear models," Statistical Papers, Springer, vol. 61(2), pages 869-898, April.
    17. Mohammad Arashi & Mahdi Roozbeh, 2015. "Shrinkage estimation in system regression model," Computational Statistics, Springer, vol. 30(2), pages 359-376, June.
    18. Mohammad Arashi & Mina Norouzirad & S. Ejaz Ahmed & Bahadır Yüzbaşı, 2018. "Rank-based Liu regression," Computational Statistics, Springer, vol. 33(3), pages 1525-1561, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:3:y:2020:i:1:p:5-55:d:330743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.